Study on Microstructural Deformation of Working Sn and SnSb Anode Particles for Li-Ion Batteries by in Situ Transmission X-ray Microscopy

被引:99
作者
Chao, Sung-Chieh [1 ]
Song, Yen-Fang [2 ]
Wang, Chun-Chieh [2 ]
Sheu, Hwo-Shuenn [2 ]
Wu, Hung-Chun [3 ]
Wu, Nae-Lih [1 ]
机构
[1] Natl Taiwan Univ, Dept Chem Engn, Taipei 106, Taiwan
[2] Natl Synchrotron Radiat Res Ctr, Hsinchu 30077, Taiwan
[3] Ind Technol Res Inst, Mat Res Labs, Hsinchu 310, Taiwan
关键词
ELECTROCHEMICAL LITHIATION; LITHIUM; TIN; ELECTRODES; COMPOSITE; SYSTEM; STORAGE; AFM;
D O I
10.1021/jp206829q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sn-containing compounds are potential high-capacity anode materials for Li-ion batteries. They, however, suffer from significant dimensional variations during electrochemical lithiation and delithiation, causing cycling instability. Understanding the dynamics of these deformation processes may provide valuable information in the establishment of viable high-energy anodes. In this paper, the evolution of interior microstructures of two types of Sn-containing particles, including Sn and SnSb, during initial cycles of electrochemical lithiation/delithation has been revealed by in situ synchrotron transmission X-ray microscopy, complemented by in situ synchrotron X-ray diffraction to provide phase information. The microstructures and deformation rates are shown to depend on particle composition, size, and alloy stoichiometry, with Li. During first lithiation, both particles exhibit core (metal)-shell (lithiated compounds) interior stractures. Initial formation of a dense surface layer containing LixSn phases of low Li-stoichiometry on the Sn particle hinder further lithiation kinetics, resulting in delayed expansion of large particles. In contrast, Sb in SnSb is readily lithiatecl to form a porous Li-rich (Li3Sb) surface layer it higher potential than Sn, which enables the acceleration of lithiation and removal of the size dependence of the lithiation process. Both lithiated particles only partially contract upon delithiation, and their interiors evolve into porous structures due to metal recrystallization. Such porous structures allow for fast lithiation and mitigated dimensional variations upon subsequent cycles. Neither of the two anode particles pulverize upon cycling.
引用
收藏
页码:22040 / 22047
页数:8
相关论文
共 27 条
[1]   Reaction of Li with alloy thin films studied by in situ AFM [J].
Beaulieu, LY ;
Hatchard, TD ;
Bonakdarpour, A ;
Fleischauer, MD ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (11) :A1457-A1464
[2]   The electrochemical reaction of lithium with tin studied by in situ AFM [J].
Beaulieu, LY ;
Beattie, SD ;
Hatchard, TD ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (04) :A419-A424
[3]   Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? [J].
Besenhard, JO ;
Yang, J ;
Winter, M .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :87-90
[4]  
Chao S.C., Taiwan patent pending, Patent No. [TW098140012, 098140012]
[5]   A study on the interior microstructures of working Sn particle electrode of Li-ion batteries by in situ X-ray transmission microscopy [J].
Chao, Sung-Chieh ;
Yen, Yu-Chan ;
Song, Yen-Fang ;
Chen, Yi-Ming ;
Wu, Hung-Chun ;
Wu, Nae-Lih .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (02) :234-237
[6]   Ab initio calculation of the lithium-tin voltage profile [J].
Courtney, IA ;
Tse, JS ;
Mao, O ;
Hafner, J ;
Dahn, JR .
PHYSICAL REVIEW B, 1998, 58 (23) :15583-15588
[7]   Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries [J].
Derrien, Gaelle ;
Hassoun, Jusef ;
Panero, Stefania ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2007, 19 (17) :2336-+
[8]   In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode [J].
Huang, Jian Yu ;
Zhong, Li ;
Wang, Chong Min ;
Sullivan, John P. ;
Xu, Wu ;
Zhang, Li Qiang ;
Mao, Scott X. ;
Hudak, Nicholas S. ;
Liu, Xiao Hua ;
Subramanian, Arunkumar ;
Fan, Hongyou ;
Qi, Liang ;
Kushima, Akihiro ;
Li, Ju .
SCIENCE, 2010, 330 (6010) :1515-1520
[9]   Lithium alloy negative electrodes [J].
Huggins, RA .
JOURNAL OF POWER SOURCES, 1999, 81 :13-19
[10]   Copper-tin anodes for rechargeable lithium batteries: an example of the matrix effect in an intermetallic system [J].
Kepler, KD ;
Vaughey, JT ;
Thackeray, MM .
JOURNAL OF POWER SOURCES, 1999, 81 :383-387