Spatially compact solutions and stabilization in Einstein-Yang-Mills-Higgs theories -: art. no. 061101

被引:8
作者
Forgács, P [1 ]
Reuillon, S [1 ]
机构
[1] Univ Tours, CNRS, Lab Math & Phys Theor, UMR 6083, F-37200 Tours, France
关键词
D O I
10.1103/PhysRevLett.95.061101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
New solutions to the static, spherically symmetric Einstein-Yang-Mills-Higgs equations with the Higgs field in the triplet (doublet) representation are presented. They form continuous families parametrized by alpha=M-W/M-Pl [M-W (M-Pl) denoting the W boson (the Planck) mass]. The corresponding spacetimes are regular and have spatially compact sections. A particularly interesting class with the Yang-Mills amplitude being nodeless is exhibited and is shown to be linearly stable with respect to spherically symmetric perturbations. For some solutions with nodes of the Yang-Mills amplitude a new stabilization phenomenon is found, according to which their unstable modes disappear as alpha increases (for the triplet) or decreases (for the doublet).
引用
收藏
页数:4
相关论文
共 22 条
[1]   A NODAL THEOREM FOR COUPLED SYSTEMS OF SCHRODINGER-EQUATIONS AND THE NUMBER OF BOUND-STATES [J].
AMANN, H ;
QUITTNER, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (09) :4553-4560
[2]   Stable monopole and dyon solutions in the Einstein-Yang-Mills theory in asymptotically anti-de Sitter space [J].
Bjoraker, J ;
Hosotani, Y .
PHYSICAL REVIEW LETTERS, 2000, 84 (09) :1853-1856
[3]   INSTABILITY OF GRAVITATING SPHALERONS [J].
BOSCHUNG, P ;
BRODBECK, O ;
MOSER, F ;
STRAUMANN, N ;
VOLKOV, M .
PHYSICAL REVIEW D, 1994, 50 (06) :3842-3846
[4]   Static cosmological solutions of the Einstein-Yang-Mills-Higgs equations [J].
Breitenlohner, P ;
Forgács, P ;
Maison, D .
PHYSICS LETTERS B, 2000, 489 (3-4) :397-402
[5]   GRAVITATING MONOPOLE SOLUTIONS .2. [J].
BREITENLOHNER, P ;
FORGACS, P ;
MAISON, D .
NUCLEAR PHYSICS B, 1995, 442 (1-2) :126-156
[6]   Stability analysis of new solutions of the EYM system with a cosmological constant [J].
Brodbeck, O ;
Heusler, M ;
Lavrelashvili, G ;
Straumann, N ;
Volkov, MS .
PHYSICAL REVIEW D, 1996, 54 (12) :7338-7352
[7]   CLASSICAL YANG-MILLS FIELDS IN A ROBERTSON-WALKER UNIVERSE [J].
CERVERO, J ;
JACOBS, L .
PHYSICS LETTERS B, 1978, 78 (04) :427-429
[8]   On the number of instabilities of cosmological solutions in an Einstein-Yang-Mills system [J].
Forgács, M ;
Reuillon, S .
PHYSICS LETTERS B, 2003, 568 (3-4) :291-297
[9]  
FORGACS P, IN PRESS
[10]   REMARKS ON SPACETIME SYMMETRIES AND NON-ABELIAN GAUGE-FIELDS [J].
HENNEAUX, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (05) :830-833