Unstable vortices do not confine

被引:10
作者
Achucarro, A
de Roo, M
Huiszoon, L
机构
[1] Inst Theoret Phys, NL-9747 AG Groningen, Netherlands
[2] Univ Basque Country, Dept Theoret Phys, UPV, EHU, Bilbao 48080, Spain
关键词
D O I
10.1016/S0370-2693(98)00239-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recently, a geometric model for the confinement of magnetic charges in the context of type II string compactifications was constructed by Greene, Morrison and Vafa [Nucl. Phys. B 481 (1996) 513]. This model assumes the existence of stable magnetic vortices with quantized flux in the low energy theory. However, quantization of flux alone does not imply that the vortex is stable. since the flux may not be confined to a tube of definite size. We show that in the field theoretical model which underlies the geometric model of confinement, static, cylindrically symmetric magnetic vortices do not exist. White our results do not preclude the existence of confinement in a different low-energy regime of string theory. they show that confinement is not a universal outcome of the string picture, and its origin in the low energy theory remains Co be understood. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:288 / 292
页数:5
相关论文
共 10 条
[1]  
ABRIKOSOV AA, 1957, SOV PHYS JETP-USSR, V5, P1174
[2]   COMMENTS ON NONLINEAR WAVE EQUATIONS AS MODELS FOR ELEMENTARY PARTICLES [J].
DERRICK, GH .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (09) :1252-&
[3]   SEMILOCAL STRINGS AND MONOPOLES [J].
GIBBONS, GW ;
ORTIZ, ME ;
RUIZ, FR ;
SAMOLS, TM .
NUCLEAR PHYSICS B, 1992, 385 (1-2) :127-144
[4]   A geometric realization of confinement [J].
Greene, BR ;
Morrison, DR ;
Vafa, C .
NUCLEAR PHYSICS B, 1996, 481 (03) :513-538
[5]   EXISTENCE AND STABILITY OF SEMILOCAL STRINGS [J].
HINDMARSH, M .
PHYSICAL REVIEW LETTERS, 1992, 68 (09) :1263-1266
[6]   VORTEX-LINE MODELS FOR DUAL STRINGS [J].
NIELSEN, HB ;
OLESEN, P .
NUCLEAR PHYSICS B, 1973, B 61 (SEP24) :45-61
[7]   What becomes of vortices in theories with flat directions [J].
Penin, AA ;
Rubakov, VA ;
Tinyakov, PG ;
Troitsky, SV .
PHYSICS LETTERS B, 1996, 389 (01) :13-17
[8]   SEMILOCAL DEFECTS [J].
PRESKILL, J .
PHYSICAL REVIEW D, 1992, 46 (10) :4218-4231
[9]   INTRODUCING SUPERSYMMETRY [J].
SOHNIUS, MF .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 128 (2-3) :39-204
[10]   SEMILOCAL COSMIC STRINGS [J].
VACHASPATI, T ;
ACHUCARRO, A .
PHYSICAL REVIEW D, 1991, 44 (10) :3067-3071