The solution to the q-KdV equation

被引:37
作者
Adler, M [1 ]
Horozov, E
van Moerbeke, P
机构
[1] Brandeis Univ, Dept Math, Waltham, MA 02254 USA
[2] Univ Sofia, Dept Math & Informat, BU-1126 Sofia, Bulgaria
[3] Univ Louvain, B-1348 Louvain, Belgium
关键词
D O I
10.1016/S0375-9601(98)00082-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let KdV stand for the Nth Gelfand-Dickey reduction of the KP hierarchy. The purpose of this Letter is to show that any KdV solution leads effectively to a solution of the q-approximation of KdV. Two different q-KdV approximations were proposed, first one by Frenkel [Int. Math. Res. Notices 2 (1996) 55] and a variation by Khesin, Lyubashenko and Roger [J. Func. Anal. 143 (1997) 55]. We show there is a dictionary between the solutions of q-KP and the 1-Toda lattice equations, obeying some special requirement; this is based on an algebra isomorphism between difference operators and D-operators, where Df(x) = f(qx). Therefore every notion about the 1-Toda lattice can be transcribed into q-language, (C) 1998 Elsevier Science B.V.
引用
收藏
页码:139 / 151
页数:13
相关论文
共 14 条
[1]   BIRKHOFF STRATA, BACKLUND-TRANSFORMATIONS, AND REGULARIZATION OF ISOSPECTRAL OPERATORS [J].
ADLER, M ;
VANMOERBEKE, P .
ADVANCES IN MATHEMATICS, 1994, 108 (01) :140-204
[2]   A LAX REPRESENTATION FOR THE VERTEX OPERATOR AND THE CENTRAL EXTENSION [J].
ADLER, M ;
SHIOTA, T ;
VANMOERBEKE, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (03) :547-588
[3]  
ADLER M, 1997, FULL 1 TODA LATTICE
[4]  
ADLER M, 1997, SPECTRUM COUPLED RAN
[5]   General methods for constructing bispectral operators [J].
Bakalov, B ;
Horozov, E ;
Yakimov, M .
PHYSICS LETTERS A, 1996, 222 (1-2) :59-66
[6]  
BAKALOV B, IN PRESS COMM MATH P
[7]  
FRENKEL E, 1996, INT MATH RES NOTICES, V2, P55
[8]  
GIESEKER D, ALGGEOM9509006
[9]  
HAINE L, 1997, IN PRESS J PHYS A
[10]   Extensions and contractions of the Lie algebra of q-pseudodifferential symbols on the circle [J].
Khesin, B ;
Lyubashenko, V ;
Roger, C .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 143 (01) :55-97