A dense oxygen separation membrane with a layered morphologic structure

被引:35
作者
Chen, Zhihao
Shao, Zongping
Ran, Ran
Zhou, Wei
Zeng, Pingying
Liu, Shaomin
机构
[1] Nanjing Univ, Coll Chem & Chem Engn, Nanjing 210009, Peoples R China
[2] Univ Queensland, Sch Engn, ARC Ctr Funct Nanomat, Brisbane, Qld 4072, Australia
基金
中国国家自然科学基金;
关键词
perovskite; oxygen permeation; asymmetric membrane; mixed conductor; layered structure;
D O I
10.1016/j.memsci.2007.05.023
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A configuration of dense mixed ionic and electronic conducting (MIEC) membrane with layered morphological structure for oxygen separation, which combines the benefits of high oxygen permeation flux of cobalt-based membrane, high chemical stability of iron-based perovskite and high mechanical strength of thick membrane, was studied. The membrane is normally composed of two layers; each layer is a dense MIEC oxide. The substrate layer is a thick dense membrane with high oxygen permeability but relatively lower chemical stability. The feasibility of dense thick Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF5582) membrane as the substrate layer and Ba0.5Sr0.5Co0.2Fe0.8O3-delta (BSCF5528) as the thin-film layer was mainly experimentally investigated. Both the BSCF5582 and the BSCF5528 show the same cubic perovskite structure and the similar lattice constant with no detrimental reaction products formed. By optimizing fabrication parameters of a simple dry pressing process, dual-layered membrane, free of cracks, was successfully fabricated. The oxygen permeation flux of a dual-layered membrane with the thin-film BSCF5528 layer facing to the sweep gas reached 2.1 mL cm(-2) min(-1) [STP] (1.56 x 10(-6) mol cm(-2) s(-1)) at 900 degrees C, which is about 3.5 times higher than that of the BSCF5528 membrane (0.6 mL cm(-2) min(-1), [STP] (4.46 x 10(-7) mol cm(-2) s(-1)) under the same conditions. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:182 / 190
页数:9
相关论文
共 50 条
[1]   Synthesis, crystal chemistry, and oxygen permeation properties of LaSr3Fe3-xCoxO10 (0 ≤ x ≤ 1.5) [J].
Armstrong, T ;
Prado, F ;
Manthiram, A .
SOLID STATE IONICS, 2001, 140 (1-2) :89-96
[2]  
BALACHANDRAN U, 1995, AM CERAM SOC BULL, V74, P71
[3]   Dense ceramic membranes for partial oxidation of methane to syngas [J].
Balachandran, U ;
Dusek, JT ;
Mieville, RL ;
Poeppel, RB ;
Kleefisch, MS ;
Pei, S ;
Kobylinski, TP ;
Udovich, CA ;
Bose, AC .
APPLIED CATALYSIS A-GENERAL, 1995, 133 (01) :19-29
[4]   Ceramic membrane reactor for converting methane to syngas [J].
Balachandran, U ;
Dusek, JT ;
Maiya, PS ;
Ma, B ;
Mieville, RL ;
Kleefisch, MS ;
Udovich, CA .
CATALYSIS TODAY, 1997, 36 (03) :265-272
[5]  
Bouwmeester H.J.M., 1996, Membrane Science and Technology, V4, P435
[6]  
BREDESEN R, 1996, SEM EC APPL INN MEMB, V21
[7]   Oxygen permeation through oxygen ion oxide-noble metal dual phase composites [J].
Chen, CS ;
Kruidhof, H ;
Bouwmeester, HJM ;
Verweij, H ;
Burggraaf, AJ .
SOLID STATE IONICS, 1996, 86-8 :569-572
[8]  
CHEN ZH, IN PRESS ELECTROCHEM
[9]   Ion transport membrane technology for oxygen separation and syngas production [J].
Dyer, PN ;
Richards, RE ;
Russek, SL ;
Taylor, DM .
SOLID STATE IONICS, 2000, 134 (1-2) :21-33
[10]   Oxygen permeation in La0.6Sr0.4Fe0.9Ga0.1O3-δ dense membrane:: effects of surface microstructure [J].
Etchegoyen, G. ;
Chartier, T. ;
Del-Gallo, P. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2006, 10 (08) :597-603