Hamiltonian time evolution for general relativity

被引:26
作者
Anderson, A [1 ]
York, JW [1 ]
机构
[1] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.81.1154
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Hamiltonian time evolution in terms of an explicit parameter time is derived for general relativity, even when the constraints are not satisfied, from the Arnowitt-Deser-Misner-Teitelboim-Ashtekar action in which the slicing density alpha(x, t) is freely specified while the lapse N = alpha g(1/2) is not. The constraint "algebra" becomes a well-posed evolution system for the constraints; this system is the twice-contracted Bianchi identity when R-ij = 0. The Hamiltonian constraint is an initial value constraint which determines g(1/)2,,d hence N, given alpha. [S0031-9007(98)06792-1].
引用
收藏
页码:1154 / 1157
页数:4
相关论文
共 30 条
[1]  
Abrahams A, 1996, CR ACAD SCI II B, V323, P835
[2]   Geometrical hyperbolic systems for general relativity and gauge theories [J].
Abrahams, A ;
Anderson, A ;
Choquet-Bruhat, Y ;
York, JW .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) :A9-A22
[3]   EINSTEIN AND YANG-MILLS THEORIES IN HYPERBOLIC FORM WITHOUT GAUGE-FIXING [J].
ABRAHAMS, A ;
ANDERSON, A ;
CHOQUETBRUHAT, Y ;
YORK, JW .
PHYSICAL REVIEW LETTERS, 1995, 75 (19) :3377-3381
[4]  
ABRAHAMS A, 1998, P 18 TEX S REL ASTR
[5]  
Anderson A., 1997, TOPOL METH NONLIN AN, V10, P353
[6]  
ANDERSON A, IN PRESS
[7]  
ANDERSON A, IN PRESS PHYS REV D
[8]  
Arnowitt R, 1962, Gravitation: An Introduction to Current Research, P227
[9]   NEW HAMILTONIAN-FORMULATION OF GENERAL-RELATIVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW D, 1987, 36 (06) :1587-1602
[10]  
ASHTEKAR A, 1988, NEW PERSPECTIVES CAN