Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems

被引:429
作者
Keith, John A. [4 ]
Vassilev-Galindo, Valentin [1 ]
Cheng, Bingqing [2 ]
Chmiela, Stefan [3 ]
Gastegger, Michael [3 ]
Mueller, Klaus-Robert [5 ,6 ,7 ,8 ]
Tkatchenko, Alexandre [1 ]
机构
[1] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
[2] Dept Comp Sci & Technol, Accelerate Programme Sci Discovery, Cambridge CB3 0FD, England
[3] Tech Univ Berlin, Dept Software Engn & Theoret Comp Sci, D-10587 Berlin, Germany
[4] Univ Pittsburgh, Swanson Sch Engn, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA
[5] Tech Univ Berlin, Machine Learning Grp, D-10587 Berlin, Germany
[6] Korea Univ, Dept Artificial Intelligence, Seoul 02841, South Korea
[7] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
[8] Google Res, Brain Team, Berlin, Germany
基金
欧洲研究理事会; 美国国家科学基金会; 瑞士国家科学基金会;
关键词
DENSITY-FUNCTIONAL-THEORY; POTENTIAL-ENERGY SURFACES; MOLECULAR-DYNAMICS SIMULATIONS; EFFECTIVE CORE POTENTIALS; DEEP NEURAL-NETWORKS; COUPLED-CLUSTER THEORY; AIDED SYNTHESIS DESIGN; SELF-CONSISTENT-FIELD; REACTIVE FORCE-FIELD; QUANTUM MONTE-CARLO;
D O I
10.1021/acs.chemrev.1c00107
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Machine learning models are poised to make a transformative impact on chemical sciences by dramatically accelerating computational algorithms and amplifying insights available from computational chemistry methods. However, achieving this requires a confluence and coaction of expertise in computer science and physical sciences. This Review is written for new and experienced researchers working at the intersection of both fields. We first provide concise tutorials of computational chemistry and machine learning methods, showing how insights involving both can be achieved. We follow with a critical review of noteworthy applications that demonstrate how computational chemistry and machine learning can be used together to provide insightful (and useful) predictions in molecular and materials modeling, retrosyntheses, catalysis, and drug design.
引用
收藏
页码:9816 / 9872
页数:57
相关论文
共 719 条
[1]   Sharing Data from Molecular Simulations [J].
Abraham, Mark ;
Apostolov, Rossen ;
Barnoud, Jonathan ;
Bauer, Paul ;
Blau, Christian ;
Bonvin, Alexandre M. J. J. ;
Chavent, Matthieu ;
Chodera, John ;
Condic-Jurkic, Karmen ;
Delemotte, Lucie ;
Grubmueller, Helmut ;
Howard, Rebecca J. ;
Jordan, E. Joseph ;
Lindahl, Erik ;
Ollila, O. H. Samuli ;
Selent, Jana ;
Smith, Daniel G. A. ;
Stansfeld, Phillip J. ;
Tiemann, Johanna K. S. ;
Trellet, Mikael ;
Woods, Christopher ;
Zhmurov, Artem .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (10) :4093-4099
[2]   Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science [J].
Agrawal, Ankit ;
Choudhary, Alok .
APL MATERIALS, 2016, 4 (05)
[3]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[4]   Large-Scale Computations in Chemistry: A Bird's Eye View of a Vibrant Field [J].
Akimov, Alexey V. ;
Prezhdo, Oleg V. .
CHEMICAL REVIEWS, 2015, 115 (12) :5797-5890
[5]   Managing the Computational Chemistry Big Data Problem: The ioChem-BD Platform [J].
Alvarez-Moreno, M. ;
de Graaf, C. ;
Lopez, N. ;
Maseras, F. ;
Poblet, J. M. ;
Bo, C. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (01) :95-103
[6]   Quantum Monte Carlo on graphical processing units [J].
Anderson, Amos G. ;
Goddard, William A., III ;
Schroeder, Peter .
COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (03) :298-306
[7]  
Anderson B, 2019, ADV NEUR IN, V32
[8]   Real-Space Density Functional Theory on Graphical Processing Units: Computational Approach and Comparison to Gaussian Basis Set Methods [J].
Andrade, Xavier ;
Aspuru-Guzik, Alan .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (10) :4360-4373
[9]  
[Anonymous], LEARN DENSITY FUNCTI
[10]  
[Anonymous], 1970, Approximate Molecular Orbital Theory