Minimal current phase and universal boundary layers in driven diffusive systems -: art. no. 056110

被引:115
作者
Hager, JS [1 ]
Krug, J
Popkov, V
Schütz, GM
机构
[1] Rhein Westfal TH Aachen, Inst Theoret Phys, D-52056 Aachen, Germany
[2] Univ Essen Gesamthsch, Fachbereich Phys, D-45117 Essen, Germany
[3] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
[4] Tech Univ Denmark, CAMP, DK-2800 Lyngby, Denmark
[5] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
[6] Kharkov Low Temp Phys & Engn Inst, UA-310164 Kharkov, Ukraine
[7] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 05期
关键词
D O I
10.1103/PhysRevE.63.056110
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate boundary-driven phase transitions in open driven diffusive systems. The generic phase diagram for systems with short-ranged interactions is governed by a simple extremal principle for the macroscopic current, which results from an interplay of density fluctuations with the motion of shocks. In systems with more than one extremum in the current-density relation, one finds a minimal current phase even though the boundaries support a higher current. The boundary layers of the critical minimal current and maximal current phases are argued to be of a universal form. The predictions of the theory are confirmed by Monte Carlo simulations of the two-parameter family of stochastic particle hopping models of Katz, Lebowitz, and Spohn and by analytical results for a related cellular automaton with deterministic bulk dynamics. The effect of disorder in the particle jump rates on the boundary layer profile is also discussed.
引用
收藏
页码:561101 / 5611012
页数:12
相关论文
共 54 条
[1]  
[Anonymous], 1999, SCALING LIMITS INTER, DOI DOI 10.1007/978-3-662-03752-2
[2]  
[Anonymous], 1998, NONEQUILIBRIUM STAT
[3]   Asymmetric exclusion process with next-nearest-neighbor interaction:: Some comments on traffic flow and a nonequilibrium reentrance transition [J].
Antal, T ;
Schütz, GM .
PHYSICAL REVIEW E, 2000, 62 (01) :83-93
[5]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[6]  
BELITSKY V, UNPUB
[7]   A simulation study of an asymmetric exclusion model with open boundaries and random rates [J].
Bengrine, M ;
Benyoussef, A ;
Ez-Zahraouy, H ;
Krug, J ;
Loulidi, M ;
Mhirech, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (13) :2527-2540
[8]   Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra [J].
Blythe, RA ;
Evans, MR ;
Colaiori, F ;
Essler, FHL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (12) :2313-2332
[9]  
Brandstetter H., 1991, THESIS U MUNICH
[10]   Statistical physics of vehicular traffic and some related systems [J].
Chowdhury, D ;
Santen, L ;
Schadschneider, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (4-6) :199-329