A web-based tool for principal component and significance analysis of microarray data

被引:204
作者
Sharov, AA [1 ]
Dudekula, DB [1 ]
Ko, MSH [1 ]
机构
[1] NIA, Dev Genom & Aging Sect, Genet Lab, NIH, Baltimore, MD 21224 USA
关键词
D O I
10.1093/bioinformatics/bti343
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We have developed a program for microarray data analysis, which features the false discovery rate for testing statistical significance and the principal component analysis using the singular value decomposition method for detecting the global trends of gene-expression patterns. Additional features include analysis of variance with multiple methods for error variance adjustment, correction of cross-channel correlation for two-color microarrays, identification of genes specific to each cluster of tissue samples, biplot of tissues and corresponding tissue-specific genes, clustering of genes that are correlated with each principal component (PC), three-dimensional graphics based on virtual reality modeling language and sharing of PC between different experiments. The software also supports parameter adjustment, gene search and graphical output of results. The software is implemented as a web tool and thus the speed of analysis does not depend on the power of a client computer.
引用
收藏
页码:2548 / 2549
页数:2
相关论文
共 11 条
  • [1] A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes
    Baldi, P
    Long, AD
    [J]. BIOINFORMATICS, 2001, 17 (06) : 509 - 519
  • [2] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [3] Using biplots to interpret gene expression patterns in plants
    Chapman, S
    Schenk, P
    Kazan, K
    Manners, J
    [J]. BIOINFORMATICS, 2002, 18 (01) : 202 - 204
  • [4] GABRIEL KR, 1971, BIOMETRIKA, V58, P453, DOI 10.2307/2334381
  • [5] Dynamics of global gene expression changes during mouse preimplantation development
    Hamatani, T
    Carter, MG
    Sharov, AA
    Ko, MSH
    [J]. DEVELOPMENTAL CELL, 2004, 6 (01) : 117 - 131
  • [6] A gene expression map for Caenorhabditis elegans
    Kim, SK
    Lund, J
    Kiraly, M
    Duke, K
    Jiang, M
    Stuart, JM
    Eizinger, A
    Wylie, BN
    Davidson, GS
    [J]. SCIENCE, 2001, 293 (5537) : 2087 - 2092
  • [7] Identifying differentially expressed genes using false discovery rate controlling procedures
    Reiner, A
    Yekutieli, D
    Benjamini, Y
    [J]. BIOINFORMATICS, 2003, 19 (03) : 368 - 375
  • [8] Transcriptome analysis of mouse stem cells and early embryos
    Sharov, AA
    Piao, YL
    Matoba, R
    Dudekula, DB
    Qian, Y
    Vanburen, V
    Falco, G
    Martin, PR
    Stagg, CA
    Bassey, UC
    Wang, YX
    Carter, MG
    Hamatani, T
    Aiba, K
    Akutsu, H
    Sharova, L
    Tanaka, TS
    Kimber, WL
    Yoshikawa, T
    Jaradat, SA
    Pantano, S
    Nagaraja, R
    Boheler, KR
    Taub, D
    Hodes, RJ
    Longo, DL
    Schlessinger, D
    Keller, J
    Klotz, E
    Kelsoe, G
    Umezawa, A
    Vescovi, AL
    Rossant, J
    Kunath, T
    Hogan, BLM
    Curci, A
    D'Urso, M
    Kelso, J
    Hide, W
    Ko, MSH
    [J]. PLOS BIOLOGY, 2003, 1 (03) : 410 - 419
  • [9] GECKO: a complete large-scale gene expression analysis platform
    Theilhaber, J
    Ulyanov, A
    Malanthara, A
    Cole, J
    Xu, DP
    Nahf, R
    Heuer, M
    Brockel, C
    Bushnell, S
    [J]. BMC BIOINFORMATICS, 2004, 5 (1)
  • [10] *TIGR, 2004, TM4 MICR SOFTW SUIT