Differential activation of mTOR signaling by contractile activity in skeletal muscle

被引:90
作者
Parkington, JD
Siebert, AP
LeBrasseur, NK
Fielding, RA
机构
[1] Boston Univ, Dept Hlth Sci, Sargent Coll Hlth & Rehabil Sci, Human Physiol Lab, Boston, MA 02215 USA
[2] Boston Univ, Sch Med, Ctr Mol Stress Response, Boston, MA 02215 USA
关键词
exercise; hypertrophy; ribosomal protein S6 kinase; Akt;
D O I
10.1152/ajpregu.00324.2003
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The cellular mechanisms by which contractile activity stimulates skeletal muscle hypertrophy are beginning to be elucidated and appear to include activation of the phosphatidylinositol 3-kinase signaling substrate mammalian target of rapamycin ( mTOR). We examined the time course and location of mTOR phosphorylation in response to an acute bout of contractile activity. Rat hindlimb muscle contractile activity was elicited by high-frequency electrical stimulation (HFES) of the sciatic nerve. Plantaris (Pla), tibialis anterior ( TA), and soleus ( Sol) muscles from stimulated and control limbs were collected immediately or 6 h after stimulation. HFES resulted in mTOR phosphorylation immediately after (3.4 +/- 0.9-fold, P < 0.01) contractile activity in Pla, whereas TA was unchanged compared with controls. mTOR phosphorylation remained elevated in Pla (3.6 +/- 0.6-fold) and increased in TA (4.6 +/- 0.9-fold, P < 0.05) 6 h after HFES. Interestingly, mTOR activation occurred predominantly in fibers expressing type IIa but not type I myosin heavy chain isoform. Furthermore, HFES induced modest ribosomal protein S6 kinase phosphorylation immediately after exercise in Pla ( 0.4 +/- 0.1-fold, P < 0.05) but not TA and more markedly 6 h after in both Pla and TA (1.4 +/- 0.4-fold vs. 2.4 +/- 0.3-fold, respectively, P < 0.01). Akt/PKB phosphorylation was similar to controls at both time points. These results suggest that mTOR signaling is increased after a single bout of muscle contractile activity. Despite reports that mTOR is activated downstream of Akt/PKB, in this study, HFES induced mTOR signaling independent of Akt/ PKB phosphorylation. Fiber type-dependent mTOR phosphorylation may be a molecular basis by which some fiber types are more susceptible to contraction-induced hypertrophy.
引用
收藏
页码:R1086 / R1090
页数:5
相关论文
共 21 条
[1]   Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise [J].
Baar, K ;
Esser, K .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1999, 276 (01) :C120-C127
[2]   Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability [J].
Beugnet, A ;
Tee, AR ;
Taylor, PM ;
Proud, CG .
BIOCHEMICAL JOURNAL, 2003, 372 :555-566
[3]   Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo [J].
Bodine, SC ;
Stitt, TN ;
Gonzalez, M ;
Kline, WO ;
Stover, GL ;
Bauerlein, R ;
Zlotchenko, E ;
Scrimgeour, A ;
Lawrence, JC ;
Glass, DJ ;
Yancopoulos, GD .
NATURE CELL BIOLOGY, 2001, 3 (11) :1014-1019
[4]   Molecular and cellular adaptation of muscle in response to physical training [J].
Booth, FW ;
Tseng, BS ;
Flück, M ;
Carson, JA .
ACTA PHYSIOLOGICA SCANDINAVICA, 1998, 162 (03) :343-350
[5]   Growth retardation and increased apoptosis in mice with homozygous disruption of the akt1 gene [J].
Chen, WS ;
Xu, PZ ;
Gottlob, K ;
Chen, ML ;
Sokol, K ;
Shiyanova, T ;
Roninson, I ;
Weng, W ;
Suzuki, R ;
Tobe, K ;
Kadowaki, T ;
Hay, N .
GENES & DEVELOPMENT, 2001, 15 (17) :2203-2208
[6]   Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice [J].
Cho, H ;
Thorvaldsen, JL ;
Chu, QW ;
Feng, F ;
Birnbaum, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (42) :38349-38352
[7]   Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ) [J].
Cho, H ;
Mu, J ;
Kim, JK ;
Thorvaldsen, JL ;
Chu, QW ;
Crenshaw, EB ;
Kaestner, KH ;
Bartolomei, MS ;
Shulman, GI ;
Birnbaum, MJ .
SCIENCE, 2001, 292 (5522) :1728-1731
[8]   The mammalian target of rapamycin regulates C2C12 myogenesis via a kinase-independent mechanism [J].
Erbay, E ;
Chen, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (39) :36079-36082
[9]   Exercise effects on muscle insulin signaling and action - Selected contribution: Acute cellular and molecular responses to resistance exercise [J].
Haddad, F ;
Adams, GR .
JOURNAL OF APPLIED PHYSIOLOGY, 2002, 93 (01) :394-403
[10]   Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase α in vitro [J].
Isotani, S ;
Hara, K ;
Tokunaga, C ;
Inoue, H ;
Avruch, J ;
Yonezawa, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (48) :34493-34498