Time delay in a basic model of the immune response

被引:60
作者
Buric, N [1 ]
Mudrinic, M [1 ]
Vasovic, N [1 ]
机构
[1] Fac Pharm Belgrade, Dept Phys, Belgrade, Yugoslavia
关键词
Mathematical models - System stability;
D O I
10.1016/S0960-0779(99)00205-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The effects of time delay on the two-dimensional system of Mayer et al., which represents the basic model of the immune response, are analysed (cf. Mayer H, Zaenker KS, an der Heiden U. A basic mathematical model of the immune response. Chaos, Solitons and Fractals 1995;5:155-61). We studied variations of the stability of the fixed points due to the time delay and the possibility for the occurrence of the chaotic solutions. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:483 / 489
页数:7
相关论文
共 12 条
[1]  
Buric N, 1999, CHAOS SOLITON FRACT, V10, P1185, DOI 10.1016/S0960-0779(98)00102-7
[2]  
BURIC N, 1999, PREPRINT
[3]  
HALE J. K., 2013, Introduction to functional differential equations
[4]  
MacDonald N., 1989, BIOL DELAY SYSTEMS
[5]   OSCILLATION AND CHAOS IN PHYSIOLOGICAL CONTROL-SYSTEMS [J].
MACKEY, MC ;
GLASS, L .
SCIENCE, 1977, 197 (4300) :287-288
[6]   A BASIC MATHEMATICAL-MODEL OF THE IMMUNE-RESPONSE [J].
MAYER, H ;
ZAENKER, KS ;
HEIDEN, UAD .
CHAOS, 1995, 5 (01) :155-161
[7]  
Murray J. D., 1989, Mathematical Biology: I. An Introduction, V2nd
[8]  
PERELSON AS, 1988, THEORETICAL IMMUNOLO, V1
[9]  
PERELSON AS, 1988, THEORETICAL IMMUNOLO, V2
[10]   CHAOTIC BEHAVIOR OF NONLINEAR DIFFERENTIAL DELAY EQUATIONS [J].
PETERS, H .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (12) :1315-1334