Killing vectors in asymptotically flat space-times .1. Asymptotically translational Killing vectors and the rigid positive energy theorem

被引:65
作者
Beig, R [1 ]
Chrusciel, PT [1 ]
机构
[1] FAC SCI,DEPT MATH,F-37200 TOURS,FRANCE
关键词
D O I
10.1063/1.531497
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study Killing vector fields in asymptotically flat space-times. We prove the following result, implicitly assumed in the uniqueness theory of stationary black holes. If the conditions of the rigidity part of the positive energy theorem are met, then in such space-times there are no asymptotically null Killing vector fields, except if the initial data set can be embedded in Minkowski space-time. We also give a proof of the nonexistence of nonsingular (in an appropriate sense) asymptotically flat space-times that satisfy an energy condition and that have a null ADM four-momentum, under conditions weaker than previously considered. (C) 1996 American Institute of Physics.
引用
收藏
页码:1939 / 1961
页数:23
相关论文
共 45 条
[1]  
Aichelburg P. C., 1971, GEN RELAT GRAVIT, V2, P303, DOI DOI 10.1007/BF00758149
[2]   ENERGY MOMENTUM OF ISOLATED SYSTEMS CANNOT BE NULL [J].
ASHTEKAR, A ;
HOROWITZ, GT .
PHYSICS LETTERS A, 1982, 89 (04) :181-184
[3]   ISOMETRIES COMPATIBLE WITH ASYMPTOTIC FLATNESS AT NULL INFINITY - COMPLETE DESCRIPTION [J].
ASHTEKAR, A ;
XANTHOPOULOS, BC .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (10) :2216-2222
[4]   CONSERVED QUANTITIES IN GENERAL-RELATIVITY [J].
ASHTEKAR, A ;
MAGNONASHTEKAR, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (05) :793-800
[5]  
ASHTEKAR A, 1978, J MATH PHYS, V21, P862
[6]  
Ashtekar Abhay., 1991, LECT NONPERTURBATIVE
[7]   THE MASS OF AN ASYMPTOTICALLY FLAT MANIFOLD [J].
BARTNIK, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (05) :661-693
[8]   ARNOWITT-DESER-MISNER ENERGY AND G00 [J].
BEIG, R .
PHYSICS LETTERS A, 1978, 69 (03) :153-155
[9]  
BICAK J, 1984, J MATH PHYS, V25, P600, DOI 10.1063/1.526161
[10]   ON WITTEN POSITIVE-ENERGY PROOF FOR WEAKLY ASYMPTOTICALLY FLAT SPACETIMES [J].
BIZON, P ;
MALEC, E .
CLASSICAL AND QUANTUM GRAVITY, 1986, 3 (06) :L123-L128