Hyperbolic conformal geometry with Clifford algebra

被引:5
作者
Li, HB [1 ]
机构
[1] Acad Math & Syst Sci, Acad Sinica, Beijing 100080, Peoples R China
关键词
Field Theory; Elementary Particle; Quantum Field Theory; Linear Space; Conformal Transformation;
D O I
10.1023/A:1003775025457
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study hyperbolic conformal geometry following a Clifford algebraic approach. Similar to embedding an affine space into a one-dimensional higher linear space, we embed the hyperboloid model of the hyperbolic n-space in R-n,R-1 into R-n+1,R-1. The model is convenient for the study of hyperbolic conformal properties. Besides investigating various properties of the model, we also study conformal transformations using their versor representations.
引用
收藏
页码:81 / 93
页数:13
相关论文
共 10 条
[1]  
HAVEL T, 1993, FDN PHYS, V23, P1357
[2]   THE DESIGN OF LINEAR ALGEBRA AND GEOMETRY [J].
HESTENES, D .
ACTA APPLICANDAE MATHEMATICAE, 1991, 23 (01) :65-93
[3]  
Hestenes D., 2012, CLIFFORD ALGEBRA GEO
[4]  
Iversen B., 1992, HYPERBOLIC GEOMETRY
[5]   Hyperbolic geometry with Clifford algebra [J].
Li, HB .
ACTA APPLICANDAE MATHEMATICAE, 1997, 48 (03) :317-358
[6]  
LI HB, 2000, GEOMETRIC COMPUTING
[7]  
MOURRAIN B, 1995, INVARIANT METHODS IN DISCRETE AND COMPUTATIONAL GEOMETRY, P107
[8]  
Ratcliffe J. G., 1994, FDN HYPERBOLIC MANIF
[9]  
SEIDEL J, 1952, S STEVIN, V29, P32
[10]  
SEIDEL J, 1952, S STEVIN, V29, P65