Structure and Function of Mammalian DNA Methyltransferases

被引:526
作者
Jurkowska, Renata Zofia [1 ]
Jurkowski, Tomasz Piotr [1 ]
Jeltsch, Albert [1 ]
机构
[1] Jacobs Univ Bremen, Sch Sci & Engn, Biochem Lab, D-28759 Bremen, Germany
关键词
DNA methylation; DNA methyltransferases; DNA recognition; methylation patterns; molecular epigenetics; DE-NOVO METHYLATION; CPG ISLAND METHYLATION; RECOMBINANT HUMAN DNA; EMBRYONIC STEM-CELLS; CYTOSINE-5; METHYLTRANSFERASE; ENZYMATIC-PROPERTIES; SRA DOMAIN; REPRESSES TRANSCRIPTION; CHROMOSOMAL INSTABILITY; MAINTENANCE METHYLATION;
D O I
10.1002/cbic.201000195
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA methylation plays an important role in epigenetic signalling, having an impact on gene regulation, chromatin structure, development and disease. Here, we review the structures and functions of the mammalian DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b, including their domain structures, catalytic mechanisms, localisation, regulation, post-translational modifications and interaction with chromatin and other proteins, summarising data obtained in genetic, cell biology and enzymatic studies. We focus on the question of how the molecular and enzymatic properties of these enzymes are connected to the dynamics of DNA methylation patterns and to the roles the enzymes play in the processes of de novo and maintenance DNA methylation. Recent enzymatic and genome-wide methylome data have led to a new model of genomic DNA methylation patterns based on the preservation of average levels of DNA methylation in certain regions, rather than the methylation states of individual CG sites.
引用
收藏
页码:206 / 222
页数:17
相关论文
共 215 条
[1]   The interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression [J].
Achour, M. ;
Jacq, X. ;
Ronde, P. ;
Alhosin, M. ;
Charlot, C. ;
Chataigneau, T. ;
Jeanblanc, M. ;
Macaluso, M. ;
Giordano, A. ;
Hughes, A. D. ;
Schini-Kerth, V. B. ;
Bronner, C. .
ONCOGENE, 2008, 27 (15) :2187-2197
[2]   Solution structure of the nonmethyl-CpG-binding CXXC domain of the leukaemia-associated MLL histone methyltransferase [J].
Allen, Mark D. ;
Grummitt, Charles G. ;
Hilcenko, Christine ;
Min, Sandra Young ;
Tonkin, Louise M. ;
Johnson, Christopher M. ;
Freund, Stefan M. ;
Bycroft, Mark ;
Warren, Alan J. .
EMBO JOURNAL, 2006, 25 (19) :4503-4512
[3]   Enzymatic properties of de novo-type mouse DNA (cytosine-5) methyltransferases [J].
Aoki, A ;
Suetake, I ;
Miyagawa, J ;
Fujio, T ;
Chijiwa, T ;
Sasaki, H ;
Tajima, S .
NUCLEIC ACIDS RESEARCH, 2001, 29 (17) :3506-3512
[4]   The DNMT1 target recognition domain resides in the N terminus [J].
Araujo, FD ;
Croteau, S ;
Slack, AD ;
Milutinovic, S ;
Bigey, P ;
Price, GB ;
Zannis-Hajopoulos, M ;
Szyf, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (10) :6930-6936
[5]   Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism [J].
Arita, Kyohei ;
Ariyoshi, Mariko ;
Tochio, Hidehito ;
Nakamura, Yusuke ;
Shirakawa, Masahiro .
NATURE, 2008, 455 (7214) :818-U12
[6]   Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1 [J].
Avvakumov, George V. ;
Walker, John R. ;
Xue, Sheng ;
Li, Yanjun ;
Duan, Shili ;
Bronner, Christian ;
Arrowsmith, Cheryl H. ;
Dhe-Paganon, Sirano .
NATURE, 2008, 455 (7214) :822-U13
[7]   Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin [J].
Bachman, KE ;
Rountree, MR ;
Baylin, SB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (34) :32282-32287
[8]   Recombinant human DNA (cytosine-5) methyltransferase II. Steady-state kinetics reveal allosteric activation by methylated DNA [J].
Bacolla, A ;
Pradhan, S ;
Roberts, RJ ;
Wells, RD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (46) :33011-33019
[9]   Recombinant human DNA (cytosine-5) methyltransferase -: III.: Allosteric control, reaction order, and influence of plasmid topology and triplet repeat length on methylation of the fragile X CGG•CCG sequence [J].
Bacolla, A ;
Pradhan, S ;
Larson, JE ;
Roberts, RJ ;
Wells, RD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (21) :18605-18613
[10]   Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells [J].
Ball, Madeleine P. ;
Li, Jin Billy ;
Gao, Yuan ;
Lee, Je-Hyuk ;
LeProust, Emily M. ;
Park, In-Hyun ;
Xie, Bin ;
Daley, George Q. ;
Church, George M. .
NATURE BIOTECHNOLOGY, 2009, 27 (04) :361-368