Arachidonic acid elicits a substrate-gated proton current associated with the glutamate transporter EAAT4

被引:56
作者
Fairman, WA
Sonders, MS
Murdoch, GH
Amara, SG [1 ]
机构
[1] Oregon Hlth Sci Univ, Howard Hughes Med Inst, Portland, OR 97201 USA
[2] Oregon Hlth Sci Univ, Vollum Inst Adv Biomed Res, Portland, OR 97201 USA
[3] Oregon Hlth Sci Univ, Dept Pathol, Portland, OR 97201 USA
关键词
D O I
10.1038/355
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Arachidonic acid modulates both electrical and biochemical properties of membrane proteins involved in cellular signaling. In Xenopus laevis oocytes expressing the excitatory amino acid transporter EAAT4, physiologically relevant concentrations of arachidonic acid increase the amplitude of the substrate-activated current by roughly twofold at -60 mV. This stimulation is not attributable to the modulation of either substrate/ion cotransport or the ligand-gated chloride current, the major conductance associated with this carrier. ion-substitution experiments reveal that arachidonic: acid stimulates a proton-selective conductance. The effect does not require metabolism of arachidonic acid and is not blocked by inhibitors of endogenous oocyte ion-exchangers. This proton conductance expands the complex repertoire of the ligand-gated channel properties associated with EAAT4.
引用
收藏
页码:105 / 113
页数:9
相关论文
共 50 条
[1]  
ARRIZA JL, 1994, J NEUROSCI, V14, P5559
[2]   Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance [J].
Arriza, JL ;
Eliasof, S ;
Kavanaugh, MP ;
Amara, SG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :4155-4160
[3]   ARACHIDONIC-ACID AS A MESSENGER IN THE CENTRAL-NERVOUS-SYSTEM [J].
ATTWELL, D ;
MILLER, B ;
SARANTIS, M .
SEMINARS IN THE NEUROSCIENCES, 1993, 5 (03) :159-169
[4]   ARACHIDONIC-ACID INDUCES A PROLONGED INHIBITION OF GLUTAMATE UPTAKE INTO GLIAL-CELLS [J].
BARBOUR, B ;
SZATKOWSKI, M ;
INGLEDEW, N ;
ATTWELL, D .
NATURE, 1989, 342 (6252) :918-920
[5]   PROLONGED PRESENCE OF GLUTAMATE DURING EXCITATORY SYNAPTIC TRANSMISSION TO CEREBELLAR PURKINJE-CELLS [J].
BARBOUR, B ;
KELLER, BU ;
LLANO, I ;
MARTY, A .
NEURON, 1994, 12 (06) :1331-1343
[6]   ELECTROGENIC GLUTAMATE UPTAKE IN GLIAL-CELLS IS ACTIVATED BY INTRACELLULAR POTASSIUM [J].
BARBOUR, B ;
BREW, H ;
ATTWELL, D .
NATURE, 1988, 335 (6189) :433-435
[7]   Modulation of non-vesicular glutamate release by pH [J].
Billups, B ;
Attwell, D .
NATURE, 1996, 379 (6561) :171-174
[8]  
CASADO M, 1993, J BIOL CHEM, V268, P27313
[9]   REDUCTIONS OF GAMMA-AMINOBUTYRIC ACID AND GLUTAMATE UPTAKE AND (NA+ + K+)-ATPASE ACTIVITY IN BRAIN-SLICES AND SYNAPTOSOMES BY ARACHIDONIC-ACID [J].
CHAN, PH ;
KERLAN, R ;
FISHMAN, RA .
JOURNAL OF NEUROCHEMISTRY, 1983, 40 (02) :309-316
[10]   Inhibition of the high-affinity brain glutamate transporter GLAST-1 via direct phosphorylation [J].
Conradt, M ;
Stoffel, W .
JOURNAL OF NEUROCHEMISTRY, 1997, 68 (03) :1244-1251