Kinematic Sunyaev-Zel'dovich cosmic microwave background temperature anisotropies generated by gas in cosmic structures

被引:19
作者
Atrio-Barandela, F. [1 ]
Muecket, J. P. [2 ]
Genova-Santos, R. [3 ]
机构
[1] Univ Salamanca, E-37008 Salamanca, Spain
[2] Inst Astrophys, D-14482 Potsdam, Germany
[3] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
关键词
cosmic microwave background; cosmology : observations; cosmology : theory;
D O I
10.1086/529139
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
If the gas in filaments and halos shares the same velocity field as the luminous matter, it will generate measurable temperature anisotropies due to the kinematic Sunyaev-Zel'dovich effect. We compute the distribution function of the KSZ signal produced by a typical filament and show it is highly non-Gaussian. The combined contribution of the thermal and kinematic SZ effects of a filament of size L similar or equal to 5 Mpc and electron density n(e) similar or equal to 10(3) m(-3) could explain the cold spot of delta similar to -200 mu K on scales of found in the Corona Borealis supercluster by the VSA experiment. Planck, with its large resolution and frequency coverage, could provide the first evidence of the existence of filaments in this region. The KSZ contribution of the network of filaments and halo structures to the radiation power spectrum peaks around l similar to 400, a scale very different from that of clusters of galaxies, with a maximum amplitude l(l+1) C-l/2 pi similar to 10 - 25 (mu K)(2), depending on model parameters, i.e., and the Jeans length. About 80% of the signal comes from filaments with redshift z <= 0.1. Adding this component to the intrinsic cosmic microwave background temperature anisotropies of the concordance model improves the fit to WMAP 3 yr data by Delta chi(2) similar or equal to 1. The improvement is not statistically significant but a more systematic study could demonstrate 2 that gas could significantly contribute to the anisotropies measured by WMAP.
引用
收藏
页码:L61 / L64
页数:4
相关论文
共 25 条
[1]   The contribution of the intergalactic medium to cosmic microwave background anisotropies [J].
Atrio-Barandela, F. ;
Muecket, J. P. .
ASTROPHYSICAL JOURNAL, 2006, 643 (01) :1-7
[2]  
Cen RY, 1999, ASTROPHYS J, V519, pL109, DOI 10.1086/312123
[3]   Semi-analytic approach to understanding the distribution of neutral hydrogen in the Universe [J].
Choudhury, TR ;
Padmanabhan, T ;
Srianand, R .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 322 (03) :561-575
[4]  
COLES P, 1991, MON NOT R ASTRON SOC, V248, P1
[5]   Halo models of large scale structure [J].
Cooray, A ;
Sheth, R .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 372 (01) :1-129
[6]   Baryons in the warm-hot intergalactic medium [J].
Davé, R ;
Cen, R ;
Ostriker, JP ;
Bryan, GL ;
Hernquist, L ;
Katz, N ;
Weinberg, DH ;
Norman, ML ;
O'Shea, B .
ASTROPHYSICAL JOURNAL, 2001, 552 (02) :473-483
[7]   LINEAR EVOLUTION OF COSMIC BARYONIC MEDIUM ON LARGE SCALES [J].
FANG, LZ ;
BI, HG ;
XIANG, SP ;
BORNER, G .
ASTROPHYSICAL JOURNAL, 1993, 413 (02) :477-485
[8]   The cosmic energy inventory [J].
Fukugita, M ;
Peebles, PJE .
ASTROPHYSICAL JOURNAL, 2004, 616 (02) :643-668
[9]   A very small array search for the extended Sunyaev-Zel'dovich effect in the Corona Borealis supercluster [J].
Genova-Santos, Ricardo ;
Rubino-Martin, Jose Alberto ;
Rebolo, Rafael ;
Cleary, Kieran ;
Davies, Rod D. ;
Davis, Richard J. ;
Dickinson, Clive ;
Falcon, Nelson ;
Grainge, Keith ;
Gutierrez, Carlos M. ;
Hobson, Michael P. ;
Jones, Michael E. ;
Kneissl, Rudiger ;
Lancaster, Katy ;
Padilla-Torres, Carmen P. ;
Saunders, Richard D. E. ;
Scott, Paul F. ;
Taylor, Angela C. ;
Watson, Robert A. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 363 (01) :79-92
[10]   The kinetic Sunyaev-Zel'dovich effect due to the electrons of our Galaxy [J].
Hajian, Amir ;
Hernandez-Monteagudo, Carlos ;
Jimenez, Raul ;
Spergel, David ;
Verder, Licia .
ASTROPHYSICAL JOURNAL, 2007, 671 (02) :1079-1083