GENERALIZED FINITE ELEMENT METHODS - MAIN IDEAS, RESULTS AND PERSPECTIVE

被引:165
作者
Babuska, Ivo [1 ]
Banerjee, Uday [2 ]
Osborn, John E. [3 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
Meshless methods; approximation; finite element methods; Poincare constants;
D O I
10.1142/S0219876204000083
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper is an overview of the main ideas of the Generalized Finite Element Method (GFEM). We present the basic results, experiences with, and potentials of this method. GFEM is a generalization of the classical Finite Element Method - in its h, p, and h-p versions - as well as of the various forms of meshless methods used in engineering.
引用
收藏
页码:67 / 103
页数:37
相关论文
共 45 条
[1]  
[Anonymous], 1971, NUMERICAL PERFORMANC
[2]  
[Anonymous], 1988, LECT NOTES MATH, DOI DOI 10.1007/BFB0086682
[3]  
Atluri S.N., 2002, MESHLESS LOCAL PETRO
[4]   Damage analysis of fiber composites Part I: Statistical analysis on fiber scale [J].
Babuska, I ;
Andersson, B ;
Smith, PJ ;
Levin, K .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 172 (1-4) :27-77
[5]  
Babuska I., 2003, Acta Numerica, V12, P1, DOI 10.1017/S0962492902000090
[6]  
Babuska I, 2000, MATH COMPUT, V69, P443, DOI 10.1090/S0025-5718-99-01085-6
[7]   On principles for the selection of shape functions for the Generalized Finite Element Method [J].
Babuska, I ;
Banerjee, U ;
Osborn, JE .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (49-50) :5595-5629
[8]   SPECIAL FINITE-ELEMENT METHODS FOR A CLASS OF 2ND-ORDER ELLIPTIC PROBLEMS WITH ROUGH COEFFICIENTS [J].
BABUSKA, I ;
CALOZ, G ;
OSBORN, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (04) :945-981
[9]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
[10]  
2-N