The vancomycin resistance VanRS two-component signal transduction system of Streptomyces coelicolor

被引:115
作者
Hutchings, MI [1 ]
Hong, HJ [1 ]
Buttner, MJ [1 ]
机构
[1] John Innes Ctr, Dept Mol Microbiol, Norwich NR4 7UH, Norfolk, England
关键词
D O I
10.1111/j.1365-2958.2005.04953.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We took advantage of the vancomycin-dependent phenotype of Streptomyces coelicolor femX null mutants to isolate a collection of spontaneous, drug-independent femX suppressor mutants that expressed the vancomycin-resistance (van) genes constitutively. All of the suppressor mutations were in vanS but, unexpectedly, many were predicted to be loss-of-function mutations. Confirming this interpretation, a constructed vanS deletion mutation also resulted in constitutive expression of the van genes, suggesting that VanS negatively regulated VanR function in the absence of drug. In contrast, a vanS pta ackA triple mutant, which should not be able synthesize acetyl phosphate, failed to express the van genes, whereas a pta ackA double mutant showed wild-type, regulated induction of the van genes. These results suggest that in the absence of vancomycin, acetyl phosphate phosphorylates VanR, and VanS acts as a phosphatase to suppress the levels of VanR similar to P. On exposure to vancomycin, VanS activity switches from a phosphatase to a kinase and vancomycin resistance is induced. In S. coelicolor, the van genes are induced by both vancomycin and the glycopeptide A47934, whereas in Streptomyces toyocaensis (the A47934 producer) resistance is induced by A47934 but not by vancomycin. We exploited this distinction to replace the S. coelicolor vanRS genes with the vanRS genes from S. toyocaensis. The resulting strain acquired the inducer profile of S. toyocaensis, providing circumstantial evidence that the VanS effector ligand is the drug itself, and not an intermediate in cell wall biosynthesis that accumulates as result of drug action. Consistent with this suggestion, we found that non-glycopeptide inhibitors of the late steps in cell wall biosynthesis such as moenomycin A, bacitracin and ramoplanin were not inducers of the S. coelicolor VanRS system, in contrast to results obtained in enterococcal VanRS systems.
引用
收藏
页码:923 / 935
页数:13
相关论文
共 36 条
[1]   INDUCTION OF VANCOMYCIN RESISTANCE IN ENTEROCOCCUS-FAECIUM BY NON-GLYCOPEPTIDE ANTIBIOTICS [J].
ALLEN, NE ;
HOBBS, JN .
FEMS MICROBIOLOGY LETTERS, 1995, 132 (1-2) :107-114
[2]   The VanS sensor negatively controls VanR-mediated transcriptional activation of glycopeptide resistance genes of Tn1546 and related elements in the absence of induction [J].
Arthur, M ;
Depardieu, F ;
Gerbaud, G ;
Galimand, M ;
Leclercq, R ;
Courvalin, P .
JOURNAL OF BACTERIOLOGY, 1997, 179 (01) :97-106
[3]   Specificity of induction of glycopeptide resistance genes in Enterococcus faecalis [J].
Baptista, M ;
Depardieu, F ;
Courvalin, P ;
Arthur, M .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1996, 40 (10) :2291-2295
[4]   Single-cell analysis of glycopeptide resistance gene expression in teicoplanin-resistant mutants of a VanB-type Enterococcus faecalis [J].
Baptista, M ;
Rodrigues, P ;
Depardieu, F ;
Courvalin, P ;
Arthur, M .
MOLECULAR MICROBIOLOGY, 1999, 32 (01) :17-28
[5]   THE STRUCTURE AND MODE OF ACTION OF GLYCOPEPTIDE ANTIBIOTICS OF THE VANCOMYCIN GROUP [J].
BARNA, JCJ ;
WILLIAMS, DH .
ANNUAL REVIEW OF MICROBIOLOGY, 1984, 38 :339-357
[6]   Regulation of RssB-dependent proteolysis in Escherichia coli:: a role for acetyl phosphate in a response regulator-controlled process [J].
Bouché, S ;
Klauck, E ;
Fischer, D ;
Lucassen, M ;
Jung, K ;
Hengge-Aronis, R .
MOLECULAR MICROBIOLOGY, 1998, 27 (04) :787-795
[7]   MOLECULAR-BASIS FOR VANCOMYCIN RESISTANCE IN ENTEROCOCCUS-FAECIUM BM4147 - BIOSYNTHESIS OF A DEPSIPEPTIDE PEPTIDOGLYCAN PRECURSOR BY VANCOMYCIN RESISTANCE PROTEINS VANH AND VANA [J].
BUGG, TDH ;
WRIGHT, GD ;
DUTKAMALEN, S ;
ARTHUR, M ;
COURVALIN, P ;
WALSH, CT .
BIOCHEMISTRY, 1991, 30 (43) :10408-10415
[8]   Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene [J].
Chang, S ;
Sievert, DM ;
Hageman, JC ;
Boulton, ML ;
Tenover, FC ;
Downes, FP ;
Shah, S ;
Rudrik, JT ;
Pupp, GR ;
Brown, WJ ;
Cardo, D ;
Fridkin, SK .
NEW ENGLAND JOURNAL OF MEDICINE, 2003, 348 (14) :1342-1347
[9]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[10]   A six amino acid deletion, partially overlapping the VanSB G2 ATP-binding motif, leads to constitutive glycopeptide resistance in VanB-type Enterococcus faecium [J].
Depardieu, F ;
Courvalin, P ;
Msadek, T .
MOLECULAR MICROBIOLOGY, 2003, 50 (03) :1069-1083