In parts of the deeply weathered and semi-arid environments of the Cobar area (NSW, Australia), detection of mineralisation using conventional soil sampling and total metal analysis is impeded. This is due to the intense leaching of trace elements within the weathered profile, discontinuous coverage of transported materials and the existence of diffuse regional geochemical anomalies of ill-defined source. Selective chemical extractions, applied to various regolith components, and biogeochemistry offer a means of isolating localised geochemical patterns related to recent dispersion of trace elements through the overburden. Lag geochemical patterns across the McKinnons deposit (Au) and Mrangelli prospect (Pb-Zn-As) reflect mechanical dispersion processes and minor hydromorphic effects. Concentrations of more mobile elements tend to be higher in the non-magnetic fraction, due to higher proportions of goethite and poorly crystalline hematite than in the magnetic fraction. The subdued soil geochemical responses for metals extractable by cold 40% hydrochloric acid (CHX) and for total element concentration reflect the leached nature of the residual profile, low grade of mineralisation, dilution by aeolian components and disequilibrium of fine fractions with coarser, relict Fe-oxides. The stronger contrast for CHX for most metals, compared with total extraction, indicates surface accumulation of trace elements derived from underlying mineralisation. Enzyme leach element anomalies are intense but generally located directly over bedrock sources or major structural breaks, irrespective of the nature of the overburden, Though mechanisms for the dispersion of trace elements extracted by enzyme leaching are not well established, the lack of lateral transport suggests vertical migration of volatile metal species (atmimorphic dispersion). The strong, multi-element response to mineralisation in cypress pine needles indicates significant metal recycling during the present erosional cycle. However, a comparison of the trace element concentrations in vegetation (cypress pine needles) and selective extractions of soils indicates that recycling by the plants is not the dominant mechanism for transportation of metals through the overburden. The vegetation may be responding to hydromorphic dispersion patterns at depth. The use of selective extractions may be useful in detecting mineralisation through deeply leached profiles, but offers even greater potential when integrated with biogeochemistry to detect targets buried by significant thickness of transported cover. (C) 1998 Elsevier Science B.V. All rights reserved.