Mitochondrial potassium transport:: the role of the mitochondrial ATP-sensitive K+ channel in cardiac function and cardioprotection

被引:268
作者
Garlid, KD
Dos Santos, P
Xie, ZJ
Costa, ADT
Paucek, P
机构
[1] Portland State Univ, Dept Biol, Portland, OR 97207 USA
[2] INSERM, U441 Atherosclerose, F-33600 Pessac, France
[3] IFR, F-33600 Pessac, France
[4] Med Coll Ohio, Dept Pharmacol, Toledo, OH 43615 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2003年 / 1606卷 / 1-3期
关键词
adenosine triphosphate; mitochondrion; heart; ATP-sensitive potassium channel; ion channel gating; myocardial infarction; ischemic preconditioning; myocardial;
D O I
10.1016/S0005-2728(03)00109-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Coronary artery disease and its sequelae-ischemia, myocardial infarction, and heart failure-are leading causes of morbidity and mortality in man. Considerable effort has been devoted toward improving functional recovery and reducing the extent of infarction after ischemic episodes. As a step in this direction, it was found that the heart was significantly protected against ischemia-reperfusion injury if it was first preconditioned by brief ischemia or by administering a potassium channel opener. Both of these preconditioning strategies were found to require opening of a K-ATP channel, and in 1997 we showed that this pivotal role was mediated by the mitochondrial ATP-sensitive K+ channel (mitoK(ATP)). This paper will review the evidence showing that opening mitoK(ATP) is cardioprotective against ischemia-reperfusion injury and, moreover, that mitoK(ATP) plays this role during all three phases of the natural history of ischemia-reperfusion injury preconditioning, ischemia, and reperfusion. We discuss two distinct mechanisms by which mitoK(ATP) opening protects the heart-increased mitochondrial production of reactive oxygen species (ROS) during the preconditioning phase and regulation of intermembrane space (IMS) volume during the ischemic and reperfusion phases. It is likely that cardioprotection by ischemic preconditioning (IPC) and K-ATP channel openers (KCOs) arises from utilization of normal physiological processes. Accordingly, we summarize the results of new studies that focus on the role of mitoK(ATP) in normal cardiomyocyte physiology. Here, we observe the same two mechanisms at work. In low-energy states, mitoK(ATP) opening triggers increased mitochondrial ROS production, thereby amplifying a cell signaling pathway leading to gene transcription and cell growth. In high-energy states, mitoK(ATP) opening prevents the matrix contraction that would otherwise occur during high rates of electron transport. MitoK(ATP)-mediated volume regulation, in turn, prevents disruption of the structure-function of the IMS and facilitates efficient energy transfers between mitochondria and myofibrillar ATPases. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 207 条