Stabilizing chaotic vortex trajectories: An example of high-dimensional control

被引:13
作者
Pentek, A
Kadtke, JB
Toroczkai, Z
机构
[1] VIRGINIA POLYTECH INST & STATE UNIV, DEPT PHYS, BLACKSBURG, VA 24061 USA
[2] EOTVOS LORAND UNIV, INST THEORET PHYS, H-1088 BUDAPEST, HUNGARY
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0375-9601(96)00792-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A chaos control algorithm is developed to actively stabilize unstable periodic orbits of higher-dimensional systems. The method assumes knowledge of the model equations and a small number of experimentally accessible parameters. General conditions for controllability are discussed. The algorithm is applied to the Hamiltonian problem of point vortices inside a circular cylinder with applications to an experimental plasma system.
引用
收藏
页码:85 / 92
页数:8
相关论文
共 24 条
  • [1] MOTION OF 3 VORTICES
    AREF, H
    [J]. PHYSICS OF FLUIDS, 1979, 22 (03) : 393 - 400
  • [3] Controlling chaos in high dimensions: Theory and experiment
    Ding, MZ
    Yang, WM
    In, V
    Ditto, WL
    Spano, ML
    Gluckman, B
    [J]. PHYSICAL REVIEW E, 1996, 53 (05): : 4334 - 4344
  • [4] MEASUREMENTS OF SYMMETRICAL VORTEX MERGER
    FINE, KS
    DRISCOLL, CF
    MALMBERG, JH
    MITCHELL, TB
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (05) : 588 - 591
  • [5] RELAXATION OF 2D TURBULENCE TO VORTEX CRYSTALS
    FINE, KS
    CASS, AC
    FLYNN, WG
    DRISCOLL, CF
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (18) : 3277 - 3280
  • [6] Havelock TH, 1931, PHILOS MAG, V11, P617
  • [7] CONTROLLED CAPTURE OF A CONTINUOUS VORTICITY DISTRIBUTION
    KADTKE, J
    PENTEK, A
    PEDRIZZETTI, G
    [J]. PHYSICS LETTERS A, 1995, 204 (02) : 108 - 114
  • [8] KADTKE JB, 1987, THESIS BROWN U
  • [9] DIOCOTRON INSTABILITY IN A CYLINDRICAL GEOMETRY
    LEVY, RH
    [J]. PHYSICS OF FLUIDS, 1965, 8 (07) : 1288 - &
  • [10] NOVIKOV EA, 1978, ZH EKSP TEOR FIZ, V48, P440