Single limb performance following contralateral bimanual limb training

被引:24
作者
Burgess, Jamie Kaye [1 ]
Bareither, Rachel
Patton, James L.
机构
[1] Northwestern Univ, Evanston, IL 60208 USA
[2] Rehabil Inst Chicago, Chicago, IL 60611 USA
关键词
adaptation; force field; human motor control; internal model;
D O I
10.1109/TNSRE.2007.903908
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recent studies on intermanual transfer of reaching movements suggest that this transfer is conducted over an "extrinsic" coordinate system. We hypothesize that training reaching movements in a force field with both hands at the same time, in the same position (bimanual grip) will be more beneficial in promoting transfer of the learned skill to the dominant hand than training the unimpaired limb on the same movements in the same force field since the representation of the movement should be invariant of the limb. However, unlike intermanual transfer, bimanual transfer has the potential to involve infinite number of actuator combinations, or joint configurations, interfering with consistent transfer. The efficacy of this method of transfer has implications for people with hemiparesis since the less-affected arm could potentially "instruct" the more-affected arm how to move. Here, we report on an experiment that evaluates and compares the skill transfer between limbs in a reaching task: 1) intermanual transfer (from the nondominant to the dominant hand) and 2) bimanual transfer (from a bimanual grip to the dominant hand) with healthy subjects. We used two methods from which to judge the transfer: performance in the presence of the force field or by errors made during "catch trials" when the forces were unexpectedly removed as subjects changed hands (known as after effects of adaptation). We found only a small amount of transfer (20% of that seen in the practiced limb) with both types of training, and surprisingly there was no significant difference in the movement accuracy between these two training methods. Moreover, the direction of the after effects supports the assertion that the nervous system generalizes these movements in an extrinsic coordinate system. Accordingly, the limb must experience the dynamics singularly in order to develop an internal model.
引用
收藏
页码:347 / 355
页数:9
相关论文
共 34 条
[1]   Handedness: Dominant arm advantages in control of limb dynamics [J].
Bagesteiro, LB ;
Sainburg, RL .
JOURNAL OF NEUROPHYSIOLOGY, 2002, 88 (05) :2408-2421
[2]   The motor system does not learn the dynamics of the arm by rote memorization of past experience [J].
Conditt, MA ;
Gandolfo, F ;
MussaIvaldi, FA .
JOURNAL OF NEUROPHYSIOLOGY, 1997, 78 (01) :554-560
[3]   Learned dynamics of reaching movements generalize from dominant to nondominant arm [J].
Criscimagna-Hemminger, SE ;
Donchin, O ;
Gazzaniga, MS ;
Shadmehr, R .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 89 (01) :168-176
[4]   Bilateral facilitation of motor control in chronic hemiplegia [J].
Cunningham, CL ;
Stoykov, MEP ;
Walter, CB .
ACTA PSYCHOLOGICA, 2002, 110 (2-3) :321-337
[5]   Primary motor cortex is involved in bimanual coordination [J].
Donchin, O ;
Gribova, A ;
Steinberg, O ;
Bergman, H ;
Vaadia, E .
NATURE, 1998, 395 (6699) :274-278
[6]   Motor learning by field approximation [J].
Gandolfo, F ;
MussaIvaldi, FA ;
Bizzi, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (09) :3843-3846
[7]   Exploiting interlimb coupling to improve paretic arm reaching performance in people with chronic stroke [J].
Harris-Love, ML ;
Waller, SM ;
Whitall, J .
ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2005, 86 (11) :2131-2137
[8]   Upper and lower extremity robotic devices for rehabilitation and for studying motor control [J].
Hesse, S ;
Schmidt, H ;
Werner, C ;
Bardeleben, A .
CURRENT OPINION IN NEUROLOGY, 2003, 16 (06) :705-710
[9]  
Ioffe M, 1996, EXP BRAIN RES, V109, P450
[10]  
Johnston C, 2005, MATER WORLD, V13, P3