NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke

被引:349
作者
Kahles, Timo
Luedike, Peter
Endres, Matthias
Galla, Hans-Joachim
Steinmetz, Helmuth
Busse, Rudi
Neumann-Haefelin, Tobias
Brandes, Ralf P.
机构
[1] Univ Frankfurt, Fachbereich Med, Inst Kardiovask Physiol, D-60596 Frankfurt, Germany
[2] Univ Frankfurt, Neurol Klin, Klin & Fachbereich Med, D-60596 Frankfurt, Germany
[3] Neurol Klin & Poliklin, Berlin, Germany
[4] Univ Munster, Inst Biochem, D-4400 Munster, Germany
关键词
endothelium; ischemia/; reperfusion; oxidative stress; RhoA; statins;
D O I
10.1161/STROKEAHA.107.489765
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and Purpose - Cerebral ischemia/reperfusion is associated with reactive oxygen species (ROS) generation, and NADPH oxidases are important sources of ROS. We hypothesized that NADPH oxidases mediate blood-brain barrier (BBB) disruption and contribute to tissue damage in ischemia/reperfusion. Methods - Ischemia was induced by filament occlusion of the middle cerebral artery in mice for 2 hours followed by reperfusion. BBB permeability was measured by Evans blue extravasation. Monolayer permeability was determined from transendothelial electrical resistance of cultured porcine brain capillary endothelial cells. Results - BBB permeability was increased in the ischemic hemisphere 1 hour after reperfusion. In NADPH oxidase knockout (gp91phox(-/-)) mice, middle cerebral artery occlusion-induced BBB disruption and lesion volume were largely attenuated compared with those in wild-type mice. Inhibition of NADPH oxidase by apocynin prevented BBB damage. In porcine brain capillary endothelial cells, hypoxia/reoxygenation induced translocation of the NADPH oxidase activator Rac-1 to the membrane. In vivo inhibition of Rac-1 by the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor atorvastatin or Clostridium difficile lethal toxin B also prevented the ischemia/reperfusion-induced BBB disruption. Stimulation of porcine brain capillary endothelial cells with H2O2 increased permeability, an effect attenuated by inhibition of phosphatidyl inositol 3-kinase or c-Jun N-terminal kinase but not blockade of extracellular signal-regulated kinase-1/2 or p38 mitogen-activated protein kinase. Inhibition of Rho kinase completely prevented the ROS-induced increase in permeability and the ROS-induced polymerization of the actin cytoskeleton. Conclusions - Activation of Rac and subsequently of the gp91phox containing NADPH oxidase promotes cerebral ROS formation, which then leads to Rho kinase-mediated endothelial cell contraction and disruption of the BBB. Inhibition of NAPDH oxidase is a promising approach to reduce brain injury after stroke.
引用
收藏
页码:3000 / 3006
页数:7
相关论文
共 39 条
[1]   Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+ [J].
Al-Mehdi, AB ;
Zhao, GC ;
Dodia, C ;
Tozawa, K ;
Costa, K ;
Muzykantov, V ;
Ross, C ;
Blecha, F ;
Dinauer, M ;
Fisher, AB .
CIRCULATION RESEARCH, 1998, 83 (07) :730-737
[2]   Direct interaction of the novel nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase [J].
Ambasta, RK ;
Kumar, P ;
Griendling, KK ;
Schmidt, HHHW ;
Busse, R ;
Brandes, RP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (44) :45935-45941
[3]   Role for matrix metalloproteinase 9 after focal cerebral ischemia, effects of gene knockout and enzyme inhibition with BB-94 [J].
Asahi, M ;
Asahi, K ;
Jung, JC ;
del Zoppo, GJ ;
Fini, ME ;
Lo, EH .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2000, 20 (12) :1681-1689
[4]   Mechanics of endothelial cell architecture and vascular permeability [J].
Baldwin, AL ;
Thurston, G .
CRITICAL REVIEWS IN BIOMEDICAL ENGINEERING, 2001, 29 (02) :247-278
[5]  
Blanc A, 2003, INT J MOL MED, V11, P229
[6]   Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase [J].
Endres, M ;
Wang, ZQ ;
Namura, S ;
Waeber, C ;
Moskowitz, MA .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1997, 17 (11) :1143-1151
[7]   Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase [J].
Endres, M ;
Laufs, U ;
Huang, ZH ;
Nakamura, T ;
Huang, P ;
Moskowitz, MA ;
Liao, JK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8880-8885
[8]   H2O2 induces paracellular permeability of porcine brain-derived microvascular endothelial cells by activation of the p44/42 MAP kinase pathway [J].
Fischer, S ;
Wiesnet, M ;
Renz, D ;
Schaper, W .
EUROPEAN JOURNAL OF CELL BIOLOGY, 2005, 84 (07) :687-697
[9]   Primary cultures of brain microvessel endothelial cells: a valid and flexible model to study drug transport through the blood-brain barrier in vitro [J].
Franke, H ;
Galla, HJ ;
Beuckmann, CT .
BRAIN RESEARCH PROTOCOLS, 2000, 5 (03) :248-256
[10]   Early appearance of activated matrix metalloproteinase-9 and blood-brain barrier disruption in mice after focal cerebral ischemia and reperfusion [J].
Fujimura, M ;
Gasche, Y ;
Morita-Fujimura, Y ;
Massengale, J ;
Kawase, M ;
Chan, PH .
BRAIN RESEARCH, 1999, 842 (01) :92-100