Generalized approach to the regulation and integration of gene expression

被引:88
作者
Oh, JI [1 ]
Kaplan, S [1 ]
机构
[1] Univ Texas, Hlth Sci Ctr, Sch Med, Dept Microbiol & Mol Genet, Houston, TX 77030 USA
关键词
D O I
10.1046/j.1365-2958.2001.02299.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The volume of electron flow through the cbb(3) branch of the electron transport chain and the redox state of the quinone pool generate signals that regulate photosynthesis gene expression in Rhodobacter sphaeroides. An inhibitory signal is generated at the level of the catalytic subunit of the cbb(3) cytochrome c oxidase and is transduced through the membrane-localized PrrC polypeptide to the PrrBA two-component activation system, which controls the expression of most of the photosynthesis genes in response to O-2. The redox state of the quinone pool is monitored by the redox-active AppA antirepressor protein, which determines the functional state of the PpsR repressor protein. The antirepressor/repressor system as well as a modulator of AppA function, TspO, together with FnrL and PrrA stringently control photopigment gene expression. These regulatory elements, together with spectral complex-specific assembly factors, control the ultimate cellular levels and composition of the photosynthetic membrane.
引用
收藏
页码:1116 / 1123
页数:8
相关论文
共 38 条
[1]  
[Anonymous], 1996, J BACTERIOL
[2]   Mechanisms for redox control of gene expression [J].
Bauer, CE ;
Elsen, S ;
Bird, TH .
ANNUAL REVIEW OF MICROBIOLOGY, 1999, 53 :495-523
[3]   DNA sequence analysis of the photosynthesis region of Rhodobacter sphaeroides 2.4.1 [J].
Choudhary, M ;
Kaplan, S .
NUCLEIC ACIDS RESEARCH, 2000, 28 (04) :862-867
[4]   KINETIC STUDIES OF PIGMENT SYNTHESIS BY NON-SULFUR PURPLE BACTERIA [J].
COHENBAZIRE, G ;
SISTROM, WR ;
STANIER, RY .
JOURNAL OF CELLULAR AND COMPARATIVE PHYSIOLOGY, 1957, 49 (01) :25-68
[5]   A PUTATIVE ANAEROBIC COPROPORPHYRINOGEN-III OXIDASE IN RHODOBACTER-SPHAEROIDES .1. MOLECULAR-CLONING, TRANSPOSON MUTAGENESIS AND SEQUENCE-ANALYSIS OF THE GENE [J].
COOMBER, SA ;
JONES, RM ;
JORDAN, PM ;
HUNTER, CN .
MOLECULAR MICROBIOLOGY, 1992, 6 (21) :3159-3169
[6]   PHENOTYPIC AND GENETIC-CHARACTERIZATION OF CYTOCHROME-C2 DEFICIENT MUTANTS OF RHODOBACTER-SPHAEROIDES [J].
DONOHUE, TJ ;
MCEWAN, AG ;
VANDOREN, S ;
CROFTS, AR ;
KAPLAN, S .
BIOCHEMISTRY, 1988, 27 (06) :1918-1925
[7]   From redox flow to gene regulation:: Role of the PrrC protein of Rhodobacter sphaeroides 2.4.1 [J].
Eraso, JM ;
Kaplan, S .
BIOCHEMISTRY, 2000, 39 (08) :2052-2062
[8]   THE SUPERFAMILY OF HEME-COPPER RESPIRATORY OXIDASES [J].
GARCIAHORSMAN, JA ;
BARQUERA, B ;
RUMBLEY, J ;
MA, JX ;
GENNIS, RB .
JOURNAL OF BACTERIOLOGY, 1994, 176 (18) :5587-5600
[9]   AppA, a redox regulator of photosystem formation in Rhodobacter sphaeroides 2.4.1, is a flavoprotein -: Identification of a novel FAD binding domain [J].
Gomelsky, M ;
Kaplan, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (52) :35319-35325
[10]   Molecular genetic analysis suggesting interactions between AppA and PpsR in regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1 [J].
Gomelsky, M ;
Kaplan, S .
JOURNAL OF BACTERIOLOGY, 1997, 179 (01) :128-134