This article reports on the use of ion chromatography (IC) to investigate extensively the release profiles of both cations and anions and characterize the relationship between composition and degradation for a ternary-based Na2O-CaO-P2O5 glass system developed as biomaterials. Studies are carried out on glasses with the formula 45P(2)O(5)-55(xCaO-Na2O) in deionized water, where x = 30, 35, and 40 mol%, using a cumulative release method, where the solution is changed at regular intervals. Degradation behavior is linear with time where the degradation rate shows an initial decrease with increasing CaO content. This rate then increases with a further addition of CaO. Cation release profiles follow similar trends to the degradation rates. Anion release profiles show a decrease for the PO4 and linear polyphosphate (P2O7 and P3O10) species with increasing CaO content. This decrease is attributed to the cross-linking of the Ca2+ ions. In contrast, the cyclic P3O9 anion exhibits the highest amount of anionic release, which demonstrates similar trends to the cations. These release patterns suggest that the cyclic P309 species dominate the degradation rates. The proposed mode of degradation is a hydrolysis reaction, with the cyclic metaphosphate undergoing acid/ base catalysis. The pH remains constant for the 30 and 35 mol% CaO glasses, and drops to about 5.5 for the 40 mol% composition. By using a response factor, it is possible to semiquantitatively analyze the additional peaks observed in the chromatograms. Suggestions are also put forward as to the identity of some of these unidentified peaks.