Alterations in the expression levels of the sarcoplasmic reticulum (SR) Ca2+-ATPase and its regulator, phospholamban, ha-ve been implicated in the effects of thyroxine hormone on cardiac function. To determine the role of phospholamban in these effects, hypothyroidism and hyperthyroidism were induced in phospholamban-deficient mice and their isogenic wild types. Hypothyroidism resulted in significant decreases of left ventricular contractility, which could be moderately stimulated by increases in preload or afterload, in both phospholamban-deficient and wild-type mice. However, the basal contractile parameters in hypothyroid phospholamban-deficient hearts were at least as high as those exhibited by hyperthyroid wild-type hearts. In hyperthyroidism, there was no further enhancement of the hyperdynamic contractile parameters in phospholamban-deficient hearts, although the wild-type hearts exhibited significantly increased contractile function compared with their respective euthyroid groups. Furthermore, increases in preload or afterload did not enhance contractility in either phospholamban-deficient or wild-type hyperthyroid hearts, Examination of the relative tissue levels of cardiac SR Ca2+-ATPase revealed increases in hyperthyroidism and decreases in hypothyroidism compared with euthyroidism, and these changes were similar between phospholamban-deficient and wild-type hearts. An opposite trend was observed for phospholamban expression levels in the wild-type group, which were depressed in hyperthyroid hearts but increased in hypothyroid hearts. These findings indicate that (1) thyroid hormones induce similar changes in the cardiac SR Ca2+-ATPase levels in either the presence or absence of phospholamban, (2) the thyroxine-induced increases in SR Ca2+-ATPase levels are not associated with any further stimulation of the hyperdynamic cardiac function in phospholamban-deficient mice, and (3) the decreased contractile parameters in hypothyroid phospholamban-deficient hearts associated with decreases in SR Ca2+-ATPase levels and myosin heavy chain isoform switches are at least as high as those of the stimulated hyperthyroid wild-type hearts. Thus. alterations in the phospholamban level or its activity may be a critical determinant of the contractile responses to altered thyroid states in the mammalian heart.