Methods and approaches in the analysis of gene expression data

被引:55
作者
Dopazo, J
Zanders, E
Dragoni, I
Amphlett, C
Falciani, F
机构
[1] Lorantis Ltd, Cambridge CB2 4UL, England
[2] Ctr Nacl Invest Oncol Carlos III, Madrid 28220, Spain
[3] Glaxo Wellcome Res & Dev Ltd, UK Discovery Genet, Stevenage SG1 2NY, Herts, England
关键词
immunological research; data analysis; human genome;
D O I
10.1016/S0022-1759(01)00307-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The application of high-density DNA array technology to monitor gene transcription has been responsible for a real paradigm shift in biology. The majority of research groups now have the ability to measure the expression of a significant proportion of the human genome in a single experiment, resulting in an unprecedented volume of data being made available to the scientific community, As a consequence of this, the storage, analysis and interpretation of this information present a major challenge. In the field of immunology the analysis of gene expression profiles has opened new areas of investigation. The study of cellular responses has revealed that cells respond to an activation signal with waves of co-ordinated gene expression profiles and that the components of these responses are the key to understanding the specific mechanisms which lead to phenotypic differentiation. The discovery of 'cell type specific' gene expression signatures have also helped the interpretation of the mechanisms leading to disease progression, Here we review the principles behind the most commonly used data analysis methods and discuss the approaches that have been employed in immunological research. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:93 / 112
页数:20
相关论文
共 59 条
[1]   Probing lymphocyte biology by genomic-scale gene expression analysis [J].
Alizadeh, A ;
Eisen, M ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
JOURNAL OF CLINICAL IMMUNOLOGY, 1998, 18 (06) :373-379
[2]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[3]   Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [J].
Alon, U ;
Barkai, N ;
Notterman, DA ;
Gish, K ;
Ybarra, S ;
Mack, D ;
Levine, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) :6745-6750
[4]  
ANDERSON NL, 1984, CLIN CHEM, V30, P2031
[5]  
[Anonymous], 1992, APPL MULTIVARIATE DA
[6]   Clustering gene expression patterns [J].
Ben-Dor, A ;
Shamir, R ;
Yakhini, Z .
JOURNAL OF COMPUTATIONAL BIOLOGY, 1999, 6 (3-4) :281-297
[7]  
BOWTELL DDL, 1999, J COMPUT BIOL, V21, P25
[8]   Knowledge-based analysis of microarray gene expression data by using support vector machines [J].
Brown, MPS ;
Grundy, WN ;
Lin, D ;
Cristianini, N ;
Sugnet, CW ;
Furey, TS ;
Ares, M ;
Haussler, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :262-267
[9]   The transcriptional program of sporulation in budding yeast [J].
Chu, S ;
DeRisi, J ;
Eisen, M ;
Mulholland, J ;
Botstein, D ;
Brown, PO ;
Herskowitz, I .
SCIENCE, 1998, 282 (5389) :699-705
[10]   Computational methods for the identification of differential and coordinated gene expression [J].
Claverie, JM .
HUMAN MOLECULAR GENETICS, 1999, 8 (10) :1821-1832