Chern-Simons hadronic bag from quenched large-N QCD

被引:17
作者
Ansoldi, S [1 ]
Castro, C
Spallucci, E
机构
[1] Univ Trieste, Dipartimento Fis Teor, I-34014 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy
[3] Clark Atlanta Univ, Ctr Theoret Studies Phys Syst, Atlanta, GA 30314 USA
关键词
D O I
10.1016/S0370-2693(01)00261-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
SU(N) reduced, quenched, gauge theories have been shown to be related to string theories. We extend this result and show how a 4-dimensional, reduced, quenched, Yang-Mills theory, supplemented by the topological term, can be related through the Wigner-Weyl-Moyal correspondence to an open 3-brane model. The boundary of the 3-brane is described by a Chern-Simons 2-brane. We identify the bulk of the 3-brane with the interior of a hadronic bag and the world-volume of the Chern-Simons 2-brane with the dynamical boundary of the bag. We estimate the value of the induced bag constant to be a Little less than 200 MeV. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:174 / 180
页数:7
相关论文
共 40 条
[1]  
ALVAREZGAUME L, HEPTH0006219
[2]   String representation of quantum loops [J].
Ansoldi, S ;
Castro, C ;
Spallucci, E .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (06) :1833-1841
[3]   String propagator: A loop space representation [J].
Ansoldi, S ;
Aurilia, A ;
Spallucci, E .
PHYSICAL REVIEW D, 1996, 53 (02) :870-878
[4]   Hausdorff dimension of a quantum string [J].
Ansoldi, S ;
Aurilia, A ;
Spallucci, E .
PHYSICAL REVIEW D, 1997, 56 (04) :2352-2361
[5]   Loop quantum mechanics and the fractal structure of quantum spacetime [J].
Ansoldi, S ;
Aurilia, A ;
Spallucci, E .
CHAOS SOLITONS & FRACTALS, 1999, 10 (2-3) :197-212
[6]  
AWATA H, HEPTH9906248
[7]   M theory as a matrix model: A conjecture [J].
Banks, T ;
Fischler, W ;
Shenker, SH ;
Susskind, L .
PHYSICAL REVIEW D, 1997, 55 (08) :5112-5128
[8]   STRINGS FROM REDUCED LARGE-N GAUGE-THEORY VIA AREA PRESERVING DIFFEOMORPHISMS [J].
BARS, I .
PHYSICS LETTERS B, 1990, 245 (01) :35-42
[9]   CENTRAL EXTENSIONS OF AREA PRESERVING MEMBRANE ALGEBRAS [J].
BARS, I ;
POPE, CN ;
SEZGIN, E .
PHYSICS LETTERS B, 1988, 210 (1-2) :85-91
[10]   The generalized Moyal-Nahm and continuous Moyal-Toda equations [J].
Castro, C ;
Plebanski, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (08) :3738-3760