Total Ozone Mapping Spectrometer measurements of aerosol absorption from space: Comparison to SAFARI 2000 ground-based observations

被引:75
作者
Torres, O [1 ]
Bhartia, PK
Sinyuk, A
Welton, EJ
Holben, B
机构
[1] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[3] Sci Syst & Applicat Inc, Lanham, MD USA
关键词
D O I
10.1029/2004JD004611
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The capability to detect the presence of absorbing aerosols in the atmosphere using space- based near- UV observations has been demonstrated in the last few years, as indicated by the widespread use by the atmospheric sciences community of the Total Ozone Mapping Spectrometer ( TOMS) aerosol index as a qualitative representation of aerosol absorption. An inversion procedure has been developed to convert the unique spectral signature generated by the interaction of molecular scattering and particle absorption into a quantitative measure of aerosol absorption. In this work we evaluate the accuracy of the near- UV method of aerosol absorption sensing by means of a comparison of TOMS retrieved aerosol single scattering albedo and extinction optical depth to groundbased measurements of the same parameters by the Aerosol Robotic Network ( AERONET) for a 2- month period during the SAFARI 2000 campaign. The availability of collocated AERONET observations of aerosol properties, as well as Micropulse Lidar Network measurements of the aerosol vertical distribution, offered a rare opportunity for the evaluation of the uncertainty associated with the height of the absorbing aerosol layer in the TOMS aerosol retrieval algorithm. Results of the comparative analysis indicate that in the absence of explicit information on the vertical distribution of the aerosols, the standard TOMS algorithm assumption yields, in most cases, reasonable agreement of aerosol optical depth ( +/-30%) and single scattering albedo ( +/-0.03) with the AERONET observations. When information on the aerosol vertical distribution is available, the accuracy of the retrieved parameters improves significantly in those cases when the actual aerosol profile is markedly different from the idealized algorithmic assumption.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 54 条
[1]   Iron oxides and light absorption by pure desert dust:: An experimental study -: art. no. D08208 [J].
Alfaro, SC ;
Lafon, S ;
Rajot, JL ;
Formenti, P ;
Gaudichet, A ;
Maillé, M .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D8) :D082081-9
[2]   Aerosols from biomass burning over the tropical South Atlantic region: Distributions and impacts [J].
Anderson, BE ;
Grant, WB ;
Gregory, GL ;
Browell, EV ;
Collins, JE ;
Sachse, GW ;
Bagwell, DR ;
Hudgins, CH ;
Blake, BR ;
Blake, NJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D19) :24117-24137
[3]   Variability of aerosol optical properties derived from in situ aircraft measurements during ACE-Asia [J].
Anderson, TL ;
Masonis, SJ ;
Covert, DS ;
Ahlquist, NC ;
Howell, SG ;
Clarke, AD ;
McNaughton, CS .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D23)
[4]  
Bergstrom RW, 2002, J ATMOS SCI, V59, P567, DOI 10.1175/1520-0469(2002)059<0567:WDOTAO>2.0.CO
[5]  
2
[6]  
Chin M, 2002, J ATMOS SCI, V59, P461, DOI 10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO
[7]  
2
[8]   Determining the UV imaginary index of refraction of Saharan dust particles from Total Ozone Mapping Spectrometer data using a three-dimensional model of dust transport [J].
Colarco, PR ;
Toon, OB ;
Torres, O ;
Rasch, PJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D16) :AAC4-1
[9]   Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements [J].
Dubovik, O ;
Smirnov, A ;
Holben, BN ;
King, MD ;
Kaufman, YJ ;
Eck, TF ;
Slutsker, I .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D8) :9791-9806
[10]   A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements [J].
Dubovik, O ;
King, MD .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D16) :20673-20696