Abyssal ocean overturning shaped by seafloor distribution

被引:84
作者
de lavergne, C. [1 ,2 ]
Madec, G. [2 ]
Roquet, F. [3 ]
Holmes, R. M. [1 ,4 ,5 ]
McDougall, T. J. [1 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ Pierre & Marie Curie Paris 6, CNRS, IRD, MNHN,Sorbonne Univ,LOCEAN Lab, F-75005 Paris, France
[3] Stockholm Univ, Dept Meteorol MISU, S-11418 Stockholm, Sweden
[4] Univ New South Wales, Climate Change Res Ctr, Sydney, NSW 2052, Australia
[5] Univ New South Wales, ARC Ctr Excellence Climate Syst Sci, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
LARGE-SCALE CIRCULATION; ANTARCTIC BOTTOM WATER; SOUTH-PACIFIC OCEAN; MID-ATLANTIC RIDGE; GLOBAL OCEAN; DEEP-WATER; NORTH PACIFIC; INDIAN-OCEAN; WORLD OCEAN; TURBULENT DISSIPATION;
D O I
10.1038/nature24472
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The abyssal ocean is broadly characterized by northward flow of the densest waters and southward flow of less-dense waters above them. Understanding what controls the strength and structure of these interhemispheric flows-referred to as the abyssal overturning circulation-is key to quantifying the ocean's ability to store carbon and heat on timescales exceeding a century. Here we show that, north of 32 degrees S, the depth distribution of the seafloor compels dense southernorigin waters to flow northward below a depth of about 4 kilometres and to return southward predominantly at depths greater than 2.5 kilometres. Unless ventilated from the north, the overlying mid-depths (1 to 2.5 kilometres deep) host comparatively weak mean meridional flow. Backed by analysis of historical radiocarbon measurements, the findings imply that the geometry of the Pacific, Indian and Atlantic basins places a major external constraint on the overturning structure.
引用
收藏
页码:181 / +
页数:18
相关论文
共 106 条
[1]   Impact of geothermal heating on the global ocean circulation [J].
Adcroft, A ;
Scott, JR ;
Marotzke, J .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (09) :1735-1738
[2]  
Bryden HL, 2003, J PHYS OCEANOGR, V33, P1870, DOI 10.1175/1520-0485(2003)033<1870:EOSMOO>2.0.CO
[3]  
2
[4]   OCEAN HEAT-TRANSPORT ACROSS 24-DEGREES-N IN THE PACIFIC [J].
BRYDEN, HL ;
ROEMMICH, DH ;
CHURCH, JA .
DEEP-SEA RESEARCH PART A-OCEANOGRAPHIC RESEARCH PAPERS, 1991, 38 (03) :297-324
[5]   Role of the Agulhas Current in Indian Ocean circulation and associated heat and freshwater fluxes [J].
Bryden, HL ;
Beal, LM .
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2001, 48 (08) :1821-1845
[6]   Decay of an internal tide due to random topography in the ocean [J].
Buehler, Oliver ;
Holmes-Cerfon, Miranda .
JOURNAL OF FLUID MECHANICS, 2011, 678 :271-293
[7]   The glacial mid-depth radiocarbon bulge and its implications for the overturning circulation [J].
Burke, Andrea ;
Stewart, Andrew L. ;
Adkins, Jess F. ;
Ferrari, Raffaele ;
Jansen, Malte F. ;
Thompson, Andrew F. .
PALEOCEANOGRAPHY, 2015, 30 (07) :1021-1039
[8]   The Impact of a Variable Mixing Efficiency on the Abyssal Overturning [J].
de Lavergne, Casimir ;
Madec, Gurvan ;
Le Sommer, Julien ;
Nurser, A. J. George ;
Garabato, Alberto C. Naveira .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2016, 46 (02) :663-681
[9]   On the Consumption of Antarctic Bottom Water in the Abyssal Ocean [J].
de Lavergne, Casimir ;
Madec, Gurvan ;
Le Sommer, Julien ;
Nurser, A. J. George ;
Garabato, Alberto C. Naveira .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2016, 46 (02) :635-661
[10]   Transport of bottom waters through the Vema Fracture Zone in the Mid-Atlantic ridge [J].
Demidov, A. N. ;
Dobrolyubov, S. A. ;
Morozov, E. G. ;
Tarakanov, R. Yu. .
DOKLADY EARTH SCIENCES, 2007, 416 (07) :1120-1124