Patterns on liquid surfaces: cnoidal waves, compactons and scaling

被引:91
作者
Ludu, A [1 ]
Draayer, JP [1 ]
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
来源
PHYSICA D | 1998年 / 123卷 / 1-4期
基金
美国国家科学基金会;
关键词
nonlinear; liquid drop; solitons; cnoidal waves; Hamiltonian system;
D O I
10.1016/S0167-2789(98)00113-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Localized patterns and nonlinear oscillation formations on the bounded free surface of an ideal incompressible liquid are investigated. Cnoidal modes, solitons and compactons, as traveling non-axially symmetric shapes are discussed. A finite-difference differential generalized Korteweg-de Vries (KdV) equation is shown to describe the three-dimensional motion of the fluid surface, and in the limit of long and shallow channels one recovers the well-known KdV equation. A tentative expansion formula for the representation of the general solution of a nonlinear equation, for given initial conditions is introduced. The model is useful in multilayer fluid dynamics, cluster formation, and nuclear physics since, up to an overall scale, these systems display a free liquid surface behavior. Copyright (C) 1998 Elsevier Science B.V.
引用
收藏
页码:82 / 91
页数:10
相关论文
共 21 条
[1]  
Abraham R., 1978, Foundations of mechanics
[2]   Free oscillations and surfactant studies of superdeformed drops in microgravity [J].
Apfel, RE ;
Tian, Y ;
Jankovsky, J ;
Shi, T ;
Chen, X ;
Holt, RG ;
Trinh, E ;
Croonquist, A ;
Thornton, KC ;
Sacco, A ;
Coleman, C ;
Leslie, FW ;
Matthiesen, DH .
PHYSICAL REVIEW LETTERS, 1997, 78 (10) :1912-1915
[3]  
BULLOUGH RK, 1980, TOPICS CURRENT PHYSI
[4]  
COOPER FS, IN PRESS
[5]  
KEVREKIDIS YG, IN PRESS PHYSICA D
[6]  
LAMB GL, 1980, ELEMENTS SOLITON THE
[7]   SHAPE OSCILLATIONS OF DROPS IN THE PRESENCE OF SURFACTANTS [J].
LU, HL ;
APFEL, RE .
JOURNAL OF FLUID MECHANICS, 1991, 222 :351-368
[8]   Generalized KdV equation for fluid dynamics and quantum algebras [J].
Ludu, A ;
Ionescu, RA ;
Greiner, W .
FOUNDATIONS OF PHYSICS, 1996, 26 (05) :665-678
[9]   Nonlinear liquid drop model. Cnoidal waves [J].
Ludu, A ;
Sandulescu, A ;
Greiner, W .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1997, 23 (03) :343-364
[10]  
LUDU A, 1996, INT SEM CNLS T8 LOS