Oxidation of propane to propylene oxide on gold catalysts

被引:57
作者
Bravo-Suarez, Juan J. [2 ]
Bando, Kyoko K. [2 ]
Lu, Jiqing [2 ,3 ]
Fujitani, Tadahiro [2 ]
Oyama, S. Ted [1 ,2 ]
机构
[1] Virginia Polytech Inst & State Univ, Environm Catalysis & Nanomat Lab, Dept Chem Engn 0211, Blacksburg, VA 24061 USA
[2] Natl Inst Adv Ind Sci & Technol, Res Inst Innovat Sustainable Chem, Tsukuba, Ibaraki 3058569, Japan
[3] Zhejiang Normal Univ, Zhejiang Key Lab React Chem Solid Surfaces, Inst Phys Chem, Jinhua 321004, Peoples R China
基金
日本学术振兴会; 美国国家科学基金会;
关键词
gold; titania; TS-1; propane; oxidative dehydrogenation; propylene; epoxidation; propylene oxide; in situ UV-vis; in situ X-ray absorption; spectroscopy;
D O I
10.1016/j.jcat.2008.01.030
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Propane epoxidation was carried out by sequential propane dehydrogenation-propylene epoxidation steps using a two-catalyst bed and H-2 and O-2 as the oxidant mixture. The propane dehydrogenation step used a Au/TiO2 catalyst that was active at the low temperature (443 K) used for the propylene, epoxidation step; the latter used a Au/TS-1 catalyst. In situ Au L-3-edge X-ray absorption near-edge structure and ultraviolet-visible measurements on Au/TiO2 under propane dehydrogenation conditions showed activation of oxygen on gold nanoparticles and evidence for the formation of adsorbed oxygen intermediate species responsible for the production of propylene. Propane epoxidation with H2 and 02 at 443 K and 0.1 MPa with the dual Au/TiO2 and Au/TS-1 catalysts resulted in an overall propane conversion of 2%, propylene selectivity of 57%, and propylene oxide selectivity of 8%, corresponding to a propylene oxide space-time yield of 4 gkg(cat)(-1)h(-1). The catalysts showed little deactivation and maintained their conversion and selectivity levels for the 12 h duration of the measurements. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:114 / 126
页数:13
相关论文
共 110 条
[1]   How oxide carriers affect the reactivity of V2O5 catalysts in the oxidative dehydrogenation of propane [J].
Arena, F ;
Frusteri, F ;
Parmaliana, A .
CATALYSIS LETTERS, 1999, 60 (1-2) :59-63
[2]   Catalytic partial oxidation of propane to acrolein [J].
Baerns, M ;
Buyevskaya, OV ;
Kubik, M ;
Maiti, G ;
Ovsitser, O ;
Seel, O .
CATALYSIS TODAY, 1997, 33 (1-3) :85-96
[3]   Oxidative dehydrogenation of propane over calcined vanadate-exchanged Mg,Al-layered double hydroxides [J].
Bahranowski, K ;
Bueno, G ;
Corberán, VC ;
Kooli, F ;
Serwicka, EM ;
Valenzuela, RX ;
Wcislo, K .
APPLIED CATALYSIS A-GENERAL, 1999, 185 (01) :65-73
[4]   The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation [J].
Bamwenda, GR ;
Tsubota, S ;
Nakamura, T ;
Haruta, M .
CATALYSIS LETTERS, 1997, 44 (1-2) :83-87
[5]   Kinetic study of a direct water synthesis over silica-supported gold nanoparticles [J].
Barton, DG ;
Podkolzin, SG .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (06) :2262-2274
[6]   Structure and bonding of gold metal clusters, colloids, and nanowires studied by EXAFS, XANES, and WAXS [J].
Benfield, RE ;
Grandjean, D ;
Kröll, M ;
Pugin, R ;
Sawitowski, T ;
Schmid, G .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (10) :1961-1970
[7]   On the partial oxidation of propane and propylene on mixed metal oxide catalysts [J].
Bettahar, MM ;
Costentin, G ;
Savary, L ;
Lavalley, JC .
APPLIED CATALYSIS A-GENERAL, 1996, 145 (1-2) :1-48
[8]   Dehydrogenation and oxydehydrogenation of paraffins to olefins [J].
Bhasin, MM ;
McCain, JH ;
Vora, BV ;
Imai, T ;
Pujadó, PR .
APPLIED CATALYSIS A-GENERAL, 2001, 221 (1-2) :397-419
[9]  
BHASIN MM, 2004, Patent No. 6765101
[10]   Transient technique for identification of true reaction intermediates: Hydroperoxide species in propylene epoxidation on gold/titanosilicate catalysts by X-ray absorption fine structure spectroscopy [J].
Bravo-Suarez, Juan J. ;
Bando, Kyoko K. ;
Lu, Jiqing ;
Haruta, Masatake ;
Fujitani, Tadahiro ;
Oyama, S. Ted .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (04) :1115-1123