Knotted zeros in the quantum states of hydrogen

被引:32
作者
Berry, M [1 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
关键词
D O I
10.1023/A:1017521126923
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Complex superpositions of degenerate hydrogen wavefunctions for the n th energy level can possess zero lines (phase singularities) in the form of knots and links. A recipe is given for constructing any torus knot. The simplest cases are constructed explicitly: the elementary link, requiring n greater than or equal to 6, and the trefoil knot, requiring it greater than or equal to 7. The knots are threaded by multistranded twisted chains of zeros. Some speculations about knots in general complex quantum energy eigenfunctions are presented.
引用
收藏
页码:659 / 667
页数:9
相关论文
共 21 条
[1]  
Barrow John D., 2000, The Book of Nothing
[2]   Much ado about nothing: optical dislocation lines (phase singularities, zeros, vortices ...) [J].
Berry, M .
INTERNATIONAL CONFERENCE ON SINGULAR OPTICS, 1998, 3487 :1-5
[3]  
Berry M., 1981, P HOUCHES SUMMER SCH, V35, P453
[4]   The Riemann zeros and eigenvalue asymptotics [J].
Berry, MV ;
Keating, JP .
SIAM REVIEW, 1999, 41 (02) :236-266
[5]   REGULAR AND IRREGULAR SEMICLASSICAL WAVEFUNCTIONS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :2083-2091
[6]   Phase singularities in isotropic random waves [J].
Berry, MV ;
Dennis, MR .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2001) :2059-2079
[7]   DIABOLICAL POINTS IN THE SPECTRA OF TRIANGLES [J].
BERRY, MV ;
WILKINSON, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1984, 392 (1802) :15-43
[8]  
BERRY MV, 2001, IN PRESS P ROY SOC L
[9]  
Cromwell P, 1998, MATH INTELL, V20, P53
[10]   Optical vortex trajectories [J].
Freund, I .
OPTICS COMMUNICATIONS, 2000, 181 (1-3) :19-33