An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers

被引:164
作者
Gómez-Cadenas, A
Verhey, SD
Holappa, LD
Shen, QX
Ho, THD
Walker-Simmons, MK
机构
[1] Washington Univ, Dept Biol, St Louis, MO 63130 USA
[2] Washington State Univ, USDA ARS, Pullman, WA 99164 USA
关键词
D O I
10.1073/pnas.96.4.1767
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The phytohormone abscisic acid (ABA) induces genes-encoding proteins involved in desiccation tolerance and dormancy in seeds, but ABA also suppresses gibberellin (GA)-responsive genes encoding hydrolytic enzymes essential for postgermination growth. A unique serine/threonine protein kinase, PKABA1 mRNA, up-regulated by ABA in seeds, has been identified. In this report, the effect of PKABA1 on the signal transduction pathway mediating ABA induction and suppression of genes has been determined in aleurone layers of barley seeds. Two groups of gene constructs were introduced to barley aleurone layers by using particle bombardment: the reporter constructs containing the coding sequence of beta-glucuronidase gene linked to hormone-responsive promoters and the effector constructs containing the coding region of protein kinases linked to a constitutive promoter. Constitutive expression of PKABA1 drastically suppressed expression of low- and high-pi cu-amylase and protease genes induced by GA. However, the presence of PKABA1 had only a small effect on the ABA induction of a gene encoding a late embryogenesis abundant protein, HVA1. Our results indicate that PKABA1 acts as a key intermediate in the signal transduction pathway leading to the suppression of GA-inducible gene expression in cereal aleurone layers.
引用
收藏
页码:1767 / 1772
页数:6
相关论文
共 45 条
  • [1] Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression
    Abe, H
    YamaguchiShinozaki, K
    Urao, T
    Iwasaki, T
    Hosokawa, D
    Shinozaki, K
    [J]. PLANT CELL, 1997, 9 (10) : 1859 - 1868
  • [2] ISOLATION OF A WHEAT CDNA CLONE FOR AN ABSCISIC ACID-INDUCIBLE TRANSCRIPT WITH HOMOLOGY TO PROTEIN-KINASES
    ANDERBERG, RJ
    WALKERSIMMONS, MK
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (21) : 10183 - 10187
  • [3] Genetic analysis of ABA signal transduction pathways
    Bonetta, D
    McCourt, P
    [J]. TRENDS IN PLANT SCIENCE, 1998, 3 (06) : 231 - 235
  • [4] Plant responses to water deficit
    Bray, EA
    [J]. TRENDS IN PLANT SCIENCE, 1997, 2 (02) : 48 - 54
  • [5] PHOTOREGULATION OF A PHYTOCHROME GENE PROMOTER FROM OAT TRANSFERRED INTO RICE BY PARTICLE BOMBARDMENT
    BRUCE, WB
    CHRISTENSEN, AH
    KLEIN, T
    FROMM, M
    QUAIL, PH
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (24) : 9692 - 9696
  • [6] Regulation of abscisic acid-induced transcription
    Busk, PK
    Pagès, M
    [J]. PLANT MOLECULAR BIOLOGY, 1998, 37 (03) : 425 - 435
  • [7] GENE-EXPRESSION REGULATED BY ABSCISIC-ACID AND ITS RELATION TO STRESS TOLERANCE
    CHANDLER, PM
    ROBERTSON, M
    [J]. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1994, 45 : 113 - 141
  • [8] Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants
    Christensen, AH
    Quail, PH
    [J]. TRANSGENIC RESEARCH, 1996, 5 (03) : 213 - 218
  • [9] Gilroy S, 1996, PLANT CELL, V8, P2193, DOI 10.1105/tpc.8.12.2193
  • [10] CURRENT ADVANCES IN ABSCISIC-ACID ACTION AND SIGNALING
    GIRAUDAT, J
    PARCY, F
    BERTAUCHE, N
    GOSTI, F
    LEUNG, J
    MORRIS, PC
    BOUVIERDURAND, M
    VARTANIAN, N
    [J]. PLANT MOLECULAR BIOLOGY, 1994, 26 (05) : 1557 - 1577