An anomalous x-ray diffraction study of the hydration structures of Cs+ and I- in concentrated solutions -: art. no. 214501

被引:31
作者
Ramos, S
Neilson, GW
Barnes, AC
Buchanan, P
机构
[1] European Synchrotron Radiat Facil, F-38043 Grenoble, France
[2] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[3] Kings Coll London, Dept Chem, London WC2R 2LS, England
关键词
D O I
10.1063/1.2128706
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Anomalous x-ray diffraction experiments were carried out on concentrated aqueous solutions of sodium iodide (6 molal) and cesium iodide (3 molal). Data were gathered at two energies below the absorption edges of the Cs+ and I- ions in order to avoid contributions from fluorescence. The statistics and quality of the raw data were improved by the use of a focusing analyzer crystal. Differences were taken between the data sets and used to calculate the hydration structures of Cs+ and I-. The structures found are more complex than anticipated for such large ions with relatively low charge densities and show evidence of ion-pair formation in both solutions. A two-Gaussian fit to the Cs+ data gives information about the Cs+-O and Cs+-I- correlations. The central position of the Gaussian representing the Cs+-O was fixed at 3.00 A, that is, the maximum of this contribution. The other parameters were allowed to vary freely, giving a Cs+-I- distance of 3.84 +/- 0.05 A and coordination numbers of 7.9 and 2.7, respectively, for the Cs+-O and Cs+-I- correlations. The results on the structure of I- in the 6 molal NaI aqueous solution were also fitted to a model based on Gaussians; this gives correlations for I--O and I--Na+ at 3.17 +/- 0.06 and 3.76 +/- 0.06 A with respective coordination numbers of 8.8 and 1.6. The structure of I- in the 3 molal CsI solution shows overlapping contributions due to I--H, I--O, and I--Cs+. The best Gaussian fit gives two peaks centered at 3.00 +/- 0.08 and 3.82 +/- 0.04 A and shows that the latter two correlations are unresolved. The hydration structures are compared with those of other alkali and halide ions. The results are also found to be in good agreement with those obtained from standard x-ray diffraction and computer simulation. (c) 2005 American Institute of Physics.
引用
收藏
页数:10
相关论文
共 32 条
[1]  
Als-Nielsen J., 2001, ELEMENTS MODERN XRAY
[2]  
[Anonymous], 1995, ACTA CRYSTALLOGR, DOI DOI 10.1107/S0108767395099958
[3]  
COTTON FA, 1976, BASIC INORGANIC CHEM, P98
[4]   Molecular simulation of LiCl aqueous solutions [J].
Degrève, L ;
Mazzé, FM .
MOLECULAR PHYSICS, 2003, 101 (10) :1443-1453
[5]   LIQUID SEMICONDUCTORS [J].
ENDERBY, JE ;
BARNES, AC .
REPORTS ON PROGRESS IN PHYSICS, 1990, 53 (02) :85-179
[6]   A focusing crystal analyser for the rejection of inelastic X-ray scattering [J].
Hamilton, MA ;
Metzger, TH ;
Mazuelas, A ;
Buslaps, T .
JOURNAL OF SYNCHROTRON RADIATION, 2003, 10 :255-259
[7]   Li+ hydration in concentrated aqueous solution [J].
Howell, I ;
Neilson, GW .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (25) :4455-4463
[8]  
James R. W., 1948, OPTICAL PRINCIPLES D
[9]   Solvent structure, dynamics, and ion mobility in aqueous solutions at 25°C [J].
Koneshan, S ;
Rasaiah, JC ;
Lynden-Bell, RM ;
Lee, SH .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (21) :4193-4204
[10]   X-RAY DIFFRACTION STUDIES OF AQUEOUS ALKALI-METAL HALIDE SOLUTIONS [J].
LAWRENCE, RM ;
KRUH, RF .
JOURNAL OF CHEMICAL PHYSICS, 1967, 47 (11) :4758-&