Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid

被引:665
作者
Yang, Chunpeng [1 ]
Fu, Kun [1 ]
Zhang, Ying [1 ]
Hitz, Emily [1 ]
Hu, Liangbing [1 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
关键词
dendrite growth; electrochemical energy storage; Li-metal anodes; organic electrolytes; solid-state electrolytes; NANOPARTICLE HYBRID ELECTROLYTES; PROPYLENE CARBONATE SOLUTIONS; ION-CONDUCTING MEMBRANE; DENDRITE-FREE; POLYMER ELECTROLYTES; CURRENT COLLECTOR; SULFUR BATTERY; CYCLE-LIFE; IMPEDANCE SPECTROSCOPY; RECHARGEABLE BATTERIES;
D O I
10.1002/adma.201701169
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-energy lithium-metal batteries are among the most promising candidates for next-generation energy storage systems. With a high specific capacity and a low reduction potential, the Li-metal anode has attracted extensive interest for decades. Dendritic Li formation, uncontrolled interfacial reactions, and huge volume effect are major hurdles to the commercial application of Li-metal anodes. Recent studies have shown that the performance and safety of Li-metal anodes can be significantly improved via organic electrolyte modification, Li-metal interface protection, Li-electrode framework design, separator coating, and so on. Superior to the liquid electrolytes, solid-state electrolytes are considered able to inhibit problematic Li dendrites and build safe solid Li-metal batteries. Inspired by the bright prospects of solid Li-metal batteries, increasing efforts have been devoted to overcoming the obstacles of solid Li-metal batteries, such as low ionic conductivity of the electrolyte and Li-electrolyte interfacial problems. Here, the approaches to protect Li-metal anodes from liquid batteries to solid-state batteries are outlined and analyzed in detail. Perspectives regarding the strategies for developing Li-metal anodes are discussed to facilitate the practical application of Li-metal batteries.
引用
收藏
页数:28
相关论文
共 177 条
[1]  
[Anonymous], NANO RES, DOI [10.1093/narigloc1079, DOI 10.1093/NARIGLOC1079]
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]  
Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/NMAT2448, 10.1038/nmat2448]
[4]   Battery separators [J].
Arora, P ;
Zhang, ZM .
CHEMICAL REVIEWS, 2004, 104 (10) :4419-4462
[5]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[6]   IMPEDANCE SPECTROSCOPY OF LITHIUM ELECTRODES .1. GENERAL BEHAVIOR IN PROPYLENE CARBONATE SOLUTIONS AND THE CORRELATION TO SURFACE-CHEMISTRY AND CYCLING EFFICIENCY [J].
AURBACH, D ;
ZABAN, A .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1993, 348 (1-2) :155-179
[7]   THE BEHAVIOR OF LITHIUM ELECTRODES IN PROPYLENE AND ETHYLENE CARBONATE - THE MAJOR FACTORS THAT INFLUENCE LI CYCLING EFFICIENCY [J].
AURBACH, D ;
GOFER, Y ;
BENZION, M ;
APED, P .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1992, 339 (1-2) :451-471
[8]   Factors which limit the cycle life of rechargeable lithium (metal) batteries [J].
Aurbach, D ;
Zinigrad, E ;
Teller, H ;
Dan, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1274-1279
[9]   RECENT STUDIES OF THE LITHIUM LIQUID ELECTROLYTE INTERFACE - ELECTROCHEMICAL, MORPHOLOGICAL AND SPECTRAL STUDIES OF A FEW IMPORTANT SYSTEMS [J].
AURBACH, D ;
ZABAN, A ;
GOFER, Y ;
ELY, YE ;
WEISSMAN, I ;
CHUSID, O ;
ABRAMSON, O .
JOURNAL OF POWER SOURCES, 1995, 54 (01) :76-84
[10]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229