Solution structure of DinI provides insight into its mode of RecA inactivation

被引:63
作者
Ramirez, BE
Voloshin, ON
Camerini-Otero, RD
Bax, A
机构
[1] NIDDKD, Chem Phys Lab, NIH, Bethesda, MD 20892 USA
[2] NIDDKD, Genet & Biochem Branch, NIH, Bethesda, MD 20892 USA
关键词
bicelle; DinI; dipolar coupling; liquid crystal; NMR; Pf1; RecA;
D O I
10.1110/ps.9.11.2161
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Escherichia coli RecA protein triggers both DNA repair and mutagenesis in a process known as the SOS response. The 81-residue E. coli protein DinI inhibits activity of RecA in vivo. The solution structure of DinI has been determined by multidimensional triple resonance NMR spectroscopy, using restraints derived from two sets of residual dipolar couplings, obtained in bicelle and phage media, supplemented with J couplings and a moderate number of NOE restraints. DinI has an alpha/beta fold comprised of a three-stranded beta -sheet and two alpha -helices. The beta -sheet topology is unusual: the central strand is flanked by a parallel and an antiparallel strand and the sheet is remarkably flat. The structure of DinI shows that six negatively charged Glu and Asp residues on DinI's kinked C-terminal alpha -helix form an extended, negatively charged ridge. We propose that this ridge mimics the electrostatic character of the DNA phospodiester backbone, thereby enabling DinI to compete with single-stranded DNA for RecA binding. Biochemical data confirm that DinI is able to displace ssDNA from RecA.
引用
收藏
页码:2161 / 2169
页数:9
相关论文
共 52 条
[1]   METHODOLOGICAL ADVANCES IN PROTEIN NMR [J].
BAX, A ;
GRZESIEK, S .
ACCOUNTS OF CHEMICAL RESEARCH, 1993, 26 (04) :131-138
[2]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475
[3]  
Brunger AT, 1993, XPLOR MANUAL VERSION
[4]   A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information [J].
Clore, GM ;
Gronenborn, AM ;
Bax, A .
JOURNAL OF MAGNETIC RESONANCE, 1998, 133 (01) :216-221
[5]   APPLICATION OF MOLECULAR-DYNAMICS WITH INTERPROTON DISTANCE RESTRAINTS TO 3-DIMENSIONAL PROTEIN-STRUCTURE DETERMINATION - A MODEL STUDY OF CRAMBIN [J].
CLORE, GM ;
BRUNGER, AT ;
KARPLUS, M ;
GRONENBORN, AM .
JOURNAL OF MOLECULAR BIOLOGY, 1986, 191 (03) :523-551
[6]   R-factor, free R, and complete cross-validation for dipolar coupling refinement of NMR structures [J].
Clore, GM ;
Garrett, DS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (39) :9008-9012
[7]   Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses [J].
Clore, GM ;
Starich, MR ;
Gronenborn, AM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (40) :10571-10572
[8]   Impact of residual dipolar couplings on the accuracy of NMR structures determined from a minimal number of NOE restraints [J].
Clore, GM ;
Starich, MR ;
Bewley, CA ;
Cai, ML ;
Kuszewski, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (27) :6513-6514
[9]   Protein backbone angle restraints from searching a database for chemical shift and sequence homology [J].
Cornilescu, G ;
Delaglio, F ;
Bax, A .
JOURNAL OF BIOMOLECULAR NMR, 1999, 13 (03) :289-302
[10]   Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase [J].
Cornilescu, G ;
Marquardt, JL ;
Ottiger, M ;
Bax, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (27) :6836-6837