The Kuramoto model:: A simple paradigm for synchronization phenomena

被引:2472
作者
Acebrón, JA
Bonilla, LL
Vicente, CJP
Ritort, F
Spigler, R
机构
[1] Univ Alcala de Henares, Dept Automat, Alcala De Henares 28871, Spain
[2] Univ Carlos III Madrid, Grp Modelizac & Simulac Numer, Leganes 28911, Spain
[3] Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain
[4] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
关键词
D O I
10.1103/RevModPhys.77.137
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Synchronization phenomena in large populations of interacting elements are the subject of intense research efforts in physical, biological, chemical, and social systems. A successful approach to the problem of synchronization consists of modeling each member of the population as a phase oscillator. In this review, synchronization is analyzed in one of the most representative models of coupled phase oscillators, the Kuramoto model. A rigorous mathematical treatment, specific numerical methods, and many variations and extensions of the original model that have appeared in the last few years are presented. Relevant applications of the model in different contexts are also included.
引用
收藏
页码:137 / 185
页数:49
相关论文
共 224 条
  • [1] A NETWORK OF OSCILLATORS
    ABBOTT, LF
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (16): : 3835 - 3859
  • [2] Abeles M., 1991, CORTICONICS
  • [3] Synchronization in populations of globally coupled oscillators with inertial effects
    Acebrón, JA
    Bonilla, LL
    Spigler, R
    [J]. PHYSICAL REVIEW E, 2000, 62 (03): : 3437 - 3454
  • [4] Asymptotic description of transients and synchronized states of globally coupled oscillators
    Acebron, JA
    Bonilla, LL
    [J]. PHYSICA D, 1998, 114 (3-4): : 296 - 314
  • [5] Adaptive frequency model for phase-frequency synchronization in large populations of globally coupled nonlinear oscillators
    Acebron, JA
    Spigler, R
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (11) : 2229 - 2232
  • [6] Uncertainty in phase-frequency synchronization of large populations of globally coupled nonlinear oscillators
    Acebrón, JA
    Spigler, R
    [J]. PHYSICA D, 2000, 141 (1-2): : 65 - 79
  • [7] Bifurcations and global stability of synchronized stationary states in the Kuramoto model for oscillator populations
    Acebrón, J.A.
    Perales, A.
    Spigler, R.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (1 II): : 1 - 016218
  • [8] Breaking the symmetry in bimodal frequency distributions of globally coupled oscillators
    Acebron, JA
    Bonilla, LL
    De Leo, S
    Spigler, R
    [J]. PHYSICAL REVIEW E, 1998, 57 (05): : 5287 - 5290
  • [9] Spectral analysis and computation for the Kuramoto-Sakaguchi integroparabolic equation
    Acebrón, JA
    Lavrentiev, MM
    Spigler, R
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (01) : 239 - 263
  • [10] Amit DJ, 1989, MODELING BRAIN FUNCT, DOI DOI 10.1017/CBO9780511623257