An analytical model of non-photorespiratory CO2 release in the light and dark in leaves of C3 species based on stoichiometric flux balance

被引:52
作者
Buckley, Thomas N. [1 ,2 ]
Adams, Mark A. [2 ,3 ]
机构
[1] Sonoma State Univ, Dept Biol, Rohnert Pk, CA 94928 USA
[2] Bushfire Cooperat Res Ctr, Melbourne, Vic, Australia
[3] Univ Sydney, Fac Agr Food & Nat Resources, Sydney, NSW 2006, Australia
关键词
alternative oxidase; carbon metabolism; Kok effect; photorespiration; photosynthesis; respiration; MITOCHONDRIAL OXIDATIVE-PHOSPHORYLATION; PHOTOSYNTHETIC ELECTRON-TRANSPORT; NITRATE ASSIMILATION; LEAF RESPIRATION; CARBON-DIOXIDE; CARBOXYLASE OXYGENASE; STOMATAL CONDUCTANCE; TEMPERATURE RESPONSE; CONSTANT FRACTION; PLANT RESPIRATION;
D O I
10.1111/j.1365-3040.2010.02228.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Leaf respiration continues in the light but at a reduced rate. This inhibition is highly variable, and the mechanisms are poorly known, partly due to the lack of a formal model that can generate testable hypotheses. We derived an analytical model for non-photorespiratory CO2 release by solving steady-state supply/demand equations for ATP, NADH and NADPH, coupled to a widely used photosynthesis model. We used this model to evaluate causes for suppression of respiration by light. The model agrees with many observations, including highly variable suppression at saturating light, greater suppression in mature leaves, reduced assimilatory quotient (ratio of net CO2 and O-2 exchange) concurrent with nitrate reduction and a Kok effect (discrete change in quantum yield at low light). The model predicts engagement of non-phosphorylating pathways at moderate to high light, or concurrent with processes that yield ATP and NADH, such as fatty acid or terpenoid synthesis. Suppression of respiration is governed largely by photosynthetic adenylate balance, although photorespiratory NADH may contribute at sub-saturating light. Key questions include the precise diel variation of anabolism and the ATP : 2e- ratio for photophosphorylation. Our model can focus experimental research and is a step towards a fully process-based model of CO2 exchange.
引用
收藏
页码:89 / 112
页数:24
相关论文
共 88 条
[1]   Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain [J].
Allen, JF .
TRENDS IN PLANT SCIENCE, 2003, 8 (01) :15-19
[2]   Changes in plant mitochondrial electron transport alter cellular levels of reactive oxygen species and susceptibility to cell death signaling molecules [J].
Amirsadeghi, Sasan ;
Robson, Christine A. ;
McDonald, Allison E. ;
Vanlerberghe, Greg C. .
PLANT AND CELL PHYSIOLOGY, 2006, 47 (11) :1509-1519
[3]   TESTING A MECHANISTIC MODEL OF FOREST-CANOPY MASS AND ENERGY-EXCHANGE USING EDDY-CORRELATION - CARBON-DIOXIDE AND OZONE UPTAKE BY A MIXED OAK MAPLE STAND [J].
AMTHOR, JS ;
GOULDEN, ML ;
MUNGER, JW ;
WOFSY, SC .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1994, 21 (05) :623-651
[4]   The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later [J].
Amthor, JS .
ANNALS OF BOTANY, 2000, 86 (01) :1-20
[5]   Biomass allocation and light partitioning among dominant and subordinate individuals in Xanthium canadense stands [J].
Anten, NPR ;
Hirose, T .
ANNALS OF BOTANY, 1998, 82 (05) :665-673
[6]   INFLUENCE OF LIGHT AND AMBIENT CARBON-DIOXIDE CONCENTRATION ON NITRATE ASSIMILATION BY INTACT BARLEY SEEDLINGS [J].
ASLAM, M ;
HUFFAKER, RC ;
RAINS, DW ;
RAO, KP .
PLANT PHYSIOLOGY, 1979, 63 (06) :1205-1209
[7]   Leaf respiration of snow gum in the light and dark. interactions between temperature and irradiance [J].
Atkin, OK ;
Evans, JR ;
Ball, MC ;
Lambers, H ;
Pons, TL .
PLANT PHYSIOLOGY, 2000, 122 (03) :915-923
[8]   Relationship between the inhibition of leaf respiration by light and enhancement of leaf dark respiration following light treatment [J].
Atkin, OK ;
Evans, JR ;
Siebke, K .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1998, 25 (04) :437-443
[9]   Thermal acclimation and the dynamic response of plant respiration to temperature [J].
Atkin, OK ;
Tjoelker, MG .
TRENDS IN PLANT SCIENCE, 2003, 8 (07) :343-351
[10]   Leaf respiration in light and darkness - A comparison of slow- and fast-growing Poa species [J].
Atkin, OK ;
Westbeek, MHM ;
Cambridge, ML ;
Lambers, H ;
Pons, TL .
PLANT PHYSIOLOGY, 1997, 113 (03) :961-965