Distribution- Versus Correlation-Induced Anomalous Transport in Quenched Random Velocity Fields

被引:67
作者
Dentz, Marco [1 ]
Bolster, Diogo [2 ]
机构
[1] Spanish Natl Res Council IDAEA CSIC, Barcelona 08034, Spain
[2] Univ Notre Dame, Dept Civil Engn & Geol Sci, Environm Fluid Dynam Labs, Notre Dame, IN 46556 USA
关键词
CHAOTIC SYSTEMS; DIFFUSION; MEDIA;
D O I
10.1103/PhysRevLett.105.244301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study mechanisms of anomalous transport in quenched random media. Broad disorder point distributions and strong disorder correlations cause anomalous transport and can lead to the same anomalous scaling laws for the mean and variance of the particle displacements. The respective mechanisms, however, are fundamentally different. This difference is reflected in the spatial particle densities and first passage time distributions, which provide an indicator to identify the origins of anomalous transport.
引用
收藏
页数:4
相关论文
共 22 条
[1]   A Levy flight for light [J].
Barthelemy, Pierre ;
Bertolotti, Jacopo ;
Wiersma, Diederik S. .
NATURE, 2008, 453 (7194) :495-498
[2]   Anomalous transport in random fracture networks [J].
Berkowitz, B ;
Scher, H .
PHYSICAL REVIEW LETTERS, 1997, 79 (20) :4038-4041
[3]   Modeling non-Fickian transport in geological formations as a continuous time random walk [J].
Berkowitz, Brian ;
Cortis, Andrea ;
Dentz, Marco ;
Scher, Harvey .
REVIEWS OF GEOPHYSICS, 2006, 44 (02)
[4]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[5]   NONEQUILIBRIUM STATISTICAL-MECHANICS OF PREASYMPTOTIC DISPERSION [J].
CUSHMAN, JH ;
HU, XL ;
GINN, TR .
JOURNAL OF STATISTICAL PHYSICS, 1994, 75 (5-6) :859-878
[6]   Anomalous diffusion as modeled by a nonstationary extension of Brownian motion [J].
Cushman, John H. ;
O'Malley, Daniel ;
Park, Moongyu .
PHYSICAL REVIEW E, 2009, 79 (03)
[7]   Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport [J].
Dentz, M ;
Cortis, A ;
Scher, H ;
Berkowitz, B .
ADVANCES IN WATER RESOURCES, 2004, 27 (02) :155-173
[8]  
GEISEL T, 1985, PHYS REV LETT, V54, P616, DOI 10.1103/PhysRevLett.54.616
[9]   How to measure subdiffusion parameters -: art. no. 170602 [J].
Kosztolowicz, T ;
Dworecki, K ;
Mrówczynski, S .
PHYSICAL REVIEW LETTERS, 2005, 94 (17)
[10]  
Kubo R., 1991, Statistical Physics, V2