No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation

被引:111
作者
Lindauer, U [1 ]
Royl, G [1 ]
Leithner, C [1 ]
Kühl, M [1 ]
Gold, L [1 ]
Gethmann, J [1 ]
Kohl-Bareis, M [1 ]
Villringer, A [1 ]
Dirnagl, U [1 ]
机构
[1] Charite Hosp, Dept Expt Neurol, D-10098 Berlin, Germany
关键词
D O I
10.1006/nimg.2000.0709
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Using optical methods through a closed cranial window over the rat primary sensory cortex in chloralose/urethane-anesthetized rats we evaluated the time course of oxygen delivery and consumption in response to a physiological stimulus (whisker deflection). Independent methodological approaches (optical imaging spectroscopy, single fiber spectroscopy, oxygen-dependent phosphorescence quenching) were applied to different modes of whisker deflection (single whisker, full whisker pad). Spectroscopic data were evaluated using different algorithms (constant pathlength, differential pathlength correction). We found that whisker deflection is accompanied by a significant increase of oxygenated hemoglobin (oxy-Hb), followed by an undershoot. An early increase in deoxygenated hemoglobin (deoxy-Hb) proceeded hyperoxygenation when spectroscopic data were analyzed by constant pathlength analysis. However, correcting for the wavelength dependence of photon pathlength in brain tissue (differential pathlength correction) completely eliminated the increase in deoxy-sb. Oxygen-dependent phosphorescence quenching did not reproducibly detect early deoxygenation. Together with recent fMRI data, our results argue against significant early deoxygenation as a universal phenomenon in functionally activated mammalian brain. Interpreted with a diffusion-limited model of oxygen delivery to brain tissue our results are compatible with coupling between neuronal activity and cerebral blood flow throughout stimulation, as postulated 110 years ago by C, Roy and C, Sherrington (1890, J. Physiol. 11:85-108), (C) 2001 Academic Press.
引用
收藏
页码:988 / 1001
页数:14
相关论文
共 47 条
[1]   Cerebral blood flow increases evoked by electrical stimulation of rat cerebellar cortex: Relation to excitatory synaptic activity and nitric oxide synthesis [J].
Akgoren, N ;
Dalgaard, P ;
Lauritzen, M .
BRAIN RESEARCH, 1996, 710 (1-2) :204-214
[2]   TIME COURSE EPI OF HUMAN BRAIN-FUNCTION DURING TASK ACTIVATION [J].
BANDETTINI, PA ;
WONG, EC ;
HINKS, RS ;
TIKOFSKY, RS ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1992, 25 (02) :390-397
[3]   A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation [J].
Buxton, RB ;
Frank, LR .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1997, 17 (01) :64-72
[4]   Variability and interhemispheric asymmetry of single-whisker functional representations in rat barrel cortex [J].
Chenbee, CH ;
Frostig, RD .
JOURNAL OF NEUROPHYSIOLOGY, 1996, 76 (02) :884-894
[5]   Red blood cell regulation of microvascular tone through adenosine triphosphate [J].
Dietrich, HH ;
Ellsworth, ML ;
Sprague, RS ;
Dacey, RG .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2000, 278 (04) :H1294-H1298
[6]   OBSERVATION OF A FAST-RESPONSE IN FUNCTIONAL MR [J].
ERNST, T ;
HENNIG, J .
MAGNETIC RESONANCE IN MEDICINE, 1994, 32 (01) :146-149
[7]   FOCAL PHYSIOLOGICAL UNCOUPLING OF CEREBRAL BLOOD-FLOW AND OXIDATIVE-METABOLISM DURING SOMATOSENSORY STIMULATION IN HUMAN-SUBJECTS [J].
FOX, PT ;
RAICHLE, ME .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (04) :1140-1144
[8]   DYNAMIC MR IMAGING OF HUMAN BRAIN OXYGENATION DURING REST AND PHOTIC-STIMULATION [J].
FRAHM, J ;
BRUHN, H ;
MERBOLDT, KD ;
HANICKE, W .
JMRI-JOURNAL OF MAGNETIC RESONANCE IMAGING, 1992, 2 (05) :501-505
[9]   Temporal characteristics of oxygenation-sensitive MRI responses to visual activation in humans [J].
Fransson, P ;
Krüger, G ;
Merboldt, KD ;
Frahm, J .
MAGNETIC RESONANCE IN MEDICINE, 1998, 39 (06) :912-919
[10]   CORTICAL FUNCTIONAL ARCHITECTURE AND LOCAL COUPLING BETWEEN NEURONAL-ACTIVITY AND THE MICROCIRCULATION REVEALED BY INVIVO HIGH-RESOLUTION OPTICAL IMAGING OF INTRINSIC SIGNALS [J].
FROSTIG, RD ;
LIEKE, EE ;
TSO, DY ;
GRINVALD, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (16) :6082-6086