Enhanced Piezoelectricity and Stretchability in Energy Harvesting Devices Fabricated from Buckled PZT Ribbons

被引:433
作者
Qi, Yi [2 ]
Kim, Jihoon [2 ]
Nguyen, Thanh D. [2 ]
Lisko, Bozhena [2 ]
Purohit, Prashant K. [1 ]
McAlpine, Michael C. [2 ]
机构
[1] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA
[2] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Hybrid nanomechanics; flexoelectric effect; stretchable energy harvesting; piezoribbons; LEAD-ZIRCONATE-TITANATE; HIGH-PERFORMANCE ELECTRONICS; SINGLE-CRYSTAL SILICON; THIN-FILMS; NANOGENERATOR; POLARIZATION; STRESS; RUBBER; DEFORMATION; CONVERSION;
D O I
10.1021/nl104412b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of a method for integrating highly efficient energy conversion materials onto soft, bio-compatible substrates could yield breakthroughs in implantable or wearable energy harvesting systems. Of particular interest are devices which can conform to irregular, curved surfaces; and operate in vital environments that may involve both flexing and stretching modes. Previous studies have shown significant advances in the integration of highly efficient piezoelectric nanocrystals on flexible and bendable substrates. Yet, such inorganic nanomaterials are mechanically incompatible with the extreme elasticity of elastomeric substrates. Here, we present a novel strategy for overcoming these limitations, by generating wavy piezoelectric ribbons on silicone rubber. Our results show that the amplitudes in the waves accommodate order-of-magnitude increases in maximum tensile strain without fracture. Further, local probing of the buckled ribbons reveals an enhancement in the piezoelectric effect of up to 70%, thus representing the highest reported piezoelectric response on a stretchable medium. These results allow for the integration of energy conversion devices which operate in stretching mode via reversible deformations in the wavy/buckled ribbons.
引用
收藏
页码:1331 / 1336
页数:6
相关论文
共 41 条
[1]   Piezoresponse Force Microscopy: A Window into Electromechanical Behavior at the Nanoscale [J].
Bonnell, D. A. ;
Kalinin, S. V. ;
Kholkin, A. L. ;
Gruverman, A. .
MRS BULLETIN, 2009, 34 (09) :648-657
[2]   Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer [J].
Bowden, N ;
Brittain, S ;
Evans, AG ;
Hutchinson, JW ;
Whitesides, GM .
NATURE, 1998, 393 (6681) :146-149
[3]   Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency [J].
Chang, Chieh ;
Tran, Van H. ;
Wang, Junbo ;
Fuh, Yiin-Kuen ;
Lin, Liwei .
NANO LETTERS, 2010, 10 (02) :726-731
[4]   1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers [J].
Chen, Xi ;
Xu, Shiyou ;
Yao, Nan ;
Shi, Yong .
NANO LETTERS, 2010, 10 (06) :2133-2137
[5]   Plastic Deformation Drives Wrinkling, Saddling, and Wedging of Annular Bilayer Nanostructures [J].
Cho, Jeong-Hyun ;
Datta, Dibakar ;
Park, Si-Young ;
Shenoy, Vivek B. ;
Gracias, David H. .
NANO LETTERS, 2010, 10 (12) :5098-5102
[6]   ELECTROSTRICTION AS THE ORIGIN OF PIEZOELECTRICITY IN FERROELECTRIC POLYMERS [J].
FURUKAWA, T ;
SEO, N .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1990, 29 (04) :675-680
[7]   Tensile fracture of soft and hard PZT [J].
Guillon, O ;
Thiebaud, F ;
Perreux, D .
INTERNATIONAL JOURNAL OF FRACTURE, 2002, 117 (03) :235-246
[8]   Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces [J].
Kalinin, SV ;
Bonnell, DA .
PHYSICAL REVIEW B, 2002, 65 (12) :1-11
[9]   Effect of applied mechanical strain on the ferroelectric and dielectric properties of Pb(Zr0.35Ti0.65)O3 thin films [J].
Kelman, MB ;
McIntyre, PC ;
Hendrix, BC ;
Bilodeau, SM ;
Roeder, JF .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (11) :9231-9236
[10]   A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates [J].
Khang, DY ;
Jiang, HQ ;
Huang, Y ;
Rogers, JA .
SCIENCE, 2006, 311 (5758) :208-212