Bone morphogenetic protein (BMP)-2 has been shown to induce ectopic expression of cardiac transcription factors and beating cardiomyocytes in non-precardiac mesodermal cells, suggesting that BMP-2 is an inductive signaling molecule that participates in cardiac development. However, direct evidence of the effects of BMP-2 on cardiac myocytes has not been reported. To examine the role of BMP-2 and its receptors, we studied the ability of BMP-2 to promote survival of isolated neonatal rat cardiac myocytes. BMP receptors IA IB, and II and activin receptor I were found to be expressed in myocytes, and BMP-2 phosphorylated Smad1 and p38 MAPK. Interestingly, BMP-2 promoted survival and inhibited apoptosis of serum-deprived myocytes, although it did not strongly induce hypertrophic growth. To explore the mechanisms for this protective effect, an adenovirus-based vector system was used. Similar to BMP-2, Smad1 promoted survival that was repressed by Smad6. Moreover, BMP-2 and Smad1 enhanced the expression of the anti-apoptotic molecule Bcl-x(L). Antisense oligonucleotides to bcl-x(L) attenuated the survival effected by BMP-2. Overall, our findings suggest that BMP-2 prevents apoptosis of myocytes by induction of Bcl-x(L) via a Smad1 pathway and might be a novel survival factor without any hypertrophic effect on myocytes.