Investigation about a screening step in model selection

被引:11
作者
Sauerbrei, Willi
Hollaender, Norbert
Buchholz, Anika
机构
[1] 79104 Freiburg
关键词
model selection uncertainty; variable screening; bootstrap; simulation;
D O I
10.1007/s11222-007-9048-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In many studies a large number of variables is measured and the identification of relevant variables influencing an outcome is an important task. For variable selection several procedures are available. However, focusing on one model only neglects that there usually exist other equally appropriate models. Bayesian or frequentist model averaging approaches have been proposed to improve the development of a predictor. With a larger number of variables (say more than ten variables) the resulting class of models can be very large. For Bayesian model averaging Occam's window is a popular approach to reduce the model space. As this approach may not eliminate any variables, a variable screening step was proposed for a frequentist model averaging procedure. Based on the results of selected models in bootstrap samples, variables are eliminated before deriving a model averaging predictor. As a simple alternative screening procedure backward elimination can be used. Through two examples and by means of simulation we investigate some properties of the screening step. In the simulation study we consider situations with fifteen and 25 variables, respectively, of which seven have an influence on the outcome. With the screening step most of the uninfluential variables will be eliminated, but also some variables with a weak effect. Variable screening leads to more applicable models without eliminating models, which are more strongly supported by the data. Furthermore, we give recommendations for important parameters of the screening step.
引用
收藏
页码:195 / 208
页数:14
相关论文
共 22 条
  • [1] Akaike H., 1992, Selected papers of hirotugu akaike, P610, DOI [DOI 10.1007/978-1-4612-1694-0_15, 10.1007/978-1-4612-1694-0_15]
  • [2] The practical utility of incorporating model selection uncertainty into prognostic models for survival data
    Augustin, N
    Sauerbrei, W
    Schumacher, M
    [J]. STATISTICAL MODELLING, 2005, 5 (02) : 95 - 118
  • [3] BUCHHOLZ A, 2007, IN PRESS COMPUT STAT
  • [4] Model selection: An integral part of inference
    Buckland, ST
    Burnham, KP
    Augustin, NH
    [J]. BIOMETRICS, 1997, 53 (02) : 603 - 618
  • [5] Burnham K. P., 2002, A practical informationtheoretic approach, DOI [DOI 10.1007/B97636, 10.1007/b97636]
  • [6] Multimodel inference - understanding AIC and BIC in model selection
    Burnham, KP
    Anderson, DR
    [J]. SOCIOLOGICAL METHODS & RESEARCH, 2004, 33 (02) : 261 - 304
  • [7] MODEL UNCERTAINTY, DATA MINING AND STATISTICAL-INFERENCE
    CHATFIELD, C
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1995, 158 : 419 - 466
  • [9] Harrell FE., 2001, REGRESSION MODELING, DOI DOI 10.1007/978-3-319-19425-7
  • [10] Bayesian model averaging: A tutorial
    Hoeting, JA
    Madigan, D
    Raftery, AE
    Volinsky, CT
    [J]. STATISTICAL SCIENCE, 1999, 14 (04) : 382 - 401