Dimensional regularization of the gravitational interaction of point masses

被引:274
作者
Damour, T
Jaranowski, P
Schäfer, G
机构
[1] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
[2] Univ Bialystok, Inst Theoret Phys, PL-15424 Bialystok, Poland
[3] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany
关键词
D O I
10.1016/S0370-2693(01)00642-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show how to use dimensional regularization to determine, within the Arnowitt-Deser-Misner canonical formalism, the reduced Hamiltonian describing the dynamics of two gravitationally interacting point masses. Implementing, at the third post-Newtonian (3PN) accuracy, our procedure we find that dimensional continuation yields a finite, unambiguous (no pole part) 3PN Hamiltonian which uniquely determines the heretofore ambiguous "static" parameter: namely, omega (s) = 0. Our work also provides a remarkable check of the perturbative consistency (compatibility with gauge symmetry) of dimensional continuation through a direct calculation of the "kinetic" parameter omega (k), giving the unique answer compatible with global Poincare invariance (omega (k) = 41/24) by summing similar to 50 different dimensionally continued contributions. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:147 / 155
页数:9
相关论文
共 28 条
  • [1] Arnowitt R, 1962, Gravitation: An Introduction to Current Research, P227
  • [2] BAKER J, GRQC0102037
  • [3] Innermost stable circular orbit of binary black holes
    Baumgarte, TW
    [J]. PHYSICAL REVIEW D, 2000, 62 (02): : 1 - 8
  • [4] Hadamard regularization
    Blanchet, L
    Faye, G
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (11) : 7675 - 7714
  • [5] On the equations of motion of point-particle binaries at the third post-Newtonian order
    Blanchet, L
    Faye, G
    [J]. PHYSICS LETTERS A, 2000, 271 (1-2) : 58 - 64
  • [6] General relativistic dynamics of compact binaries at the third post-Newtonian order
    Blanchet, L
    Faye, G
    [J]. PHYSICAL REVIEW D, 2001, 63 (06):
  • [7] BLANCHET L, GRQC0006100
  • [8] LOWEST ORDER DIVERGENT GRAPHS IN NU-DIMENSIONAL SPACE
    BOLLINI, CG
    GIAMBIAGI, JJ
    [J]. PHYSICS LETTERS B, 1972, B 40 (05) : 566 - +
  • [9] DIMENSIONAL RENORMALIZATION AND ACTION PRINCIPLE
    BREITENLOHNER, P
    MAISON, D
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 52 (01) : 11 - 38
  • [10] Transition from inspiral to plunge in binary black hole coalescences
    Buonanno, A
    Damour, T
    [J]. PHYSICAL REVIEW D, 2000, 62 (06)