Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys

被引:445
作者
Werner, Jeffrey J. [2 ]
Koren, Omry [1 ]
Hugenholtz, Philip [3 ]
DeSantis, Todd Z. [4 ]
Walters, William A. [5 ]
Caporaso, J. Gregory [5 ]
Angenent, Largus T. [2 ]
Knight, Rob [5 ,6 ]
Ley, Ruth E. [1 ]
机构
[1] Cornell Univ, Dept Microbiol, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Biol & Environm Engn, Ithaca, NY 14853 USA
[3] Univ Queensland, Australian Ctr Ecogenom, Sch Chem & Mol Biosci, Brisbane, Qld, Australia
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Environm Biotechnol, Berkeley, CA 94720 USA
[5] Univ Colorado, Dept Biochem & Chem, Boulder, CO 80309 USA
[6] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA
关键词
Greengenes; microbiome; naive Bayesian classifier; pyrosequencing; taxonomy; SEARCH TOOL; ALIGNMENTS; SEQUENCES; TAXONOMY; DATABASE; PRIMERS; SCALE; ARB;
D O I
10.1038/ismej.2011.82
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Taxonomic classification of the thousands-millions of 16S rRNA gene sequences generated in microbiome studies is often achieved using a naive Bayesian classifier (for example, the Ribosomal Database Project II (RDP) classifier), due to favorable trade-offs among automation, speed and accuracy. The resulting classification depends on the reference sequences and taxonomic hierarchy used to train the model; although the influence of primer sets and classification algorithms have been explored in detail, the influence of training set has not been characterized. We compared classification results obtained using three different publicly available databases as training sets, applied to five different bacterial 16S rRNA gene pyrosequencing data sets generated (from human body, mouse gut, python gut, soil and anaerobic digester samples). We observed numerous advantages to using the largest, most diverse training set available, that we constructed from the Greengenes (GG) bacterial/archaeal 16S rRNA gene sequence database and the latest GG taxonomy. Phylogenetic clusters of previously unclassified experimental sequences were identified with notable improvements (for example, 50% reduction in reads unclassified at the phylum level in mouse gut, soil and anaerobic digester samples), especially for phylotypes belonging to specific phyla (Tenericutes, Chloroflexi, Synergistetes and Candidate phyla TM6, TM7). Trimming the reference sequences to the primer region resulted in systematic improvements in classification depth, and greatest gains at higher confidence thresholds. Phylotypes unclassified at the genus level represented a greater proportion of the total community variation than classified operational taxonomic units in mouse gut and anaerobic digester samples, underscoring the need for greater diversity in existing reference databases. The ISME Journal (2012) 6, 94-103; doi:10.1038/ismej.2011.82; published online 30 June 2011
引用
收藏
页码:94 / 103
页数:10
相关论文
共 30 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]  
[Anonymous], 2005, PHYLIP (phylogeny inference package) version 3.6
[3]   The Use of Coded PCR Primers Enables High-Throughput Sequencing of Multiple Homolog Amplification Products by 454 Parallel Sequencing [J].
Binladen, Jonas ;
Gilbert, M. Thomas P. ;
Bollback, Jonathan P. ;
Panitz, Frank ;
Bendixen, Christian ;
Nielsen, Rasmus ;
Willerslev, Eske .
PLOS ONE, 2007, 2 (02)
[4]   QIIME allows analysis of high-throughput community sequencing data [J].
Caporaso, J. Gregory ;
Kuczynski, Justin ;
Stombaugh, Jesse ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
Costello, Elizabeth K. ;
Fierer, Noah ;
Pena, Antonio Gonzalez ;
Goodrich, Julia K. ;
Gordon, Jeffrey I. ;
Huttley, Gavin A. ;
Kelley, Scott T. ;
Knights, Dan ;
Koenig, Jeremy E. ;
Ley, Ruth E. ;
Lozupone, Catherine A. ;
McDonald, Daniel ;
Muegge, Brian D. ;
Pirrung, Meg ;
Reeder, Jens ;
Sevinsky, Joel R. ;
Tumbaugh, Peter J. ;
Walters, William A. ;
Widmann, Jeremy ;
Yatsunenko, Tanya ;
Zaneveld, Jesse ;
Knight, Rob .
NATURE METHODS, 2010, 7 (05) :335-336
[5]   PyNAST: a flexible tool for aligning sequences to a template alignment [J].
Caporaso, J. Gregory ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
DeSantis, Todd Z. ;
Andersen, Gary L. ;
Knight, Rob .
BIOINFORMATICS, 2010, 26 (02) :266-267
[6]   The Ribosomal Database Project: improved alignments and new tools for rRNA analysis [J].
Cole, J. R. ;
Wang, Q. ;
Cardenas, E. ;
Fish, J. ;
Chai, B. ;
Farris, R. J. ;
Kulam-Syed-Mohideen, A. S. ;
McGarrell, D. M. ;
Marsh, T. ;
Garrity, G. M. ;
Tiedje, J. M. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D141-D145
[7]   Postprandial remodeling of the gut microbiota in Burmese python']pythons [J].
Costello, Elizabeth K. ;
Gordon, Jeffrey I. ;
Secor, Stephen M. ;
Knight, Rob .
ISME JOURNAL, 2010, 4 (11) :1375-1385
[8]   Bacterial Community Variation in Human Body Habitats Across Space and Time [J].
Costello, Elizabeth K. ;
Lauber, Christian L. ;
Hamady, Micah ;
Fierer, Noah ;
Gordon, Jeffrey I. ;
Knight, Rob .
SCIENCE, 2009, 326 (5960) :1694-1697
[9]   Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB [J].
DeSantis, T. Z. ;
Hugenholtz, P. ;
Larsen, N. ;
Rojas, M. ;
Brodie, E. L. ;
Keller, K. ;
Huber, T. ;
Dalevi, D. ;
Hu, P. ;
Andersen, G. L. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (07) :5069-5072
[10]  
DeSantis Todd Z., 2011, BMC Ecology, V11, P11, DOI 10.1186/1472-6785-11-11