Odorant feature detection: Activity mapping of structure response relationships in the zebrafish olfactory bulb

被引:54
作者
Fuss, SH [1 ]
Korsching, SI [1 ]
机构
[1] Univ Cologne, Inst Genet, D-50674 Cologne, Germany
关键词
olfactory bulb; odorant feature; zebrafish; odorant; olfactory receptor; Danio rerio; Calcium Green; optical imaging;
D O I
10.1523/JNEUROSCI.21-21-08396.2001
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The structural determinants of an odor molecule necessary and/or sufficient for interaction with the cognate olfactory receptor(s) are not known. Olfactory receptor neurons expressing the same olfactory receptor converge in the olfactory bulb. Thus, optical imaging of neuronal activity in the olfactory bulb can visualize at once the contributions by all the different olfactory receptors responsive to a particular odorant. We have used this technique to derive estimates about the structural requirements and minimal number of different zebrafish olfactory receptors that respond to a series of naturally occurring amino acids and some structurally related compounds. We report that the alpha -carboxyl group, the alpha -amino group, and L-conformation of the amino acid are all required for activation of amino acid-responsive receptors. Increasing carbon chain length recruits successively more receptors. With increasing concentrations, the activity patterns induced by a homolog series of amino acids became more similar to each other. At intermediate concentrations patterns were unique across substances and across concentrations. The introduction of a terminal amino group (charged) both recruits additional receptors and prevents binding to some of the receptors that were responsive to the unsubstituted analog. In contrast, the introduction of a beta -hydroxyl group (polar) excluded the odorants from some of the receptors that are capable of binding the unsubstituted analog. Cross-adaptation experiments independently confirmed these results. Thus, odorant detection requires several different receptors even for relatively simple odorants such as amino acids, and individual receptors require the presence of some molecular features, the absence of others, and tolerate still other molecular features.
引用
收藏
页码:8396 / 8407
页数:12
相关论文
共 55 条
[1]   The molecular receptive range of an odorant receptor [J].
Araneda, RC ;
Kini, AD ;
Firestein, S .
NATURE NEUROSCIENCE, 2000, 3 (12) :1248-1255
[2]   Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABAB heteroreceptors [J].
Aroniadou-Anderjaska, V ;
Zhou, FM ;
Priest, CA ;
Ennis, M ;
Shipley, MT .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 84 (03) :1194-1203
[3]   The architecture of the colour centre in the human visual brain: new results and a review [J].
Bartels, A ;
Zeki, S .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2000, 12 (01) :172-190
[4]   Asynchronous onset of odorant receptor expression in the developing zebrafish olfactory system [J].
Barth, AL ;
Justice, NJ ;
Ngai, J .
NEURON, 1996, 16 (01) :23-34
[5]   A NOVEL MULTIGENE FAMILY MAY ENCODE ODORANT RECEPTORS - A MOLECULAR-BASIS FOR ODOR RECOGNITION [J].
BUCK, L ;
AXEL, R .
CELL, 1991, 65 (01) :175-187
[6]   ELECTROPHYSIOLOGICAL EVIDENCE FOR ACIDIC, BASIC, AND NEUTRAL AMINO-ACID OLFACTORY RECEPTOR-SITES IN THE CATFISH [J].
CAPRIO, J ;
BYRD, RP .
JOURNAL OF GENERAL PHYSIOLOGY, 1984, 84 (03) :403-422
[7]   SALAMANDER OLFACTORY-BULB NEURONAL-ACTIVITY OBSERVED BY VIDEO-RATE, VOLTAGE-SENSITIVE DYE IMAGING .3. SPATIAL AND TEMPORAL PROPERTIES OF RESPONSES EVOKED BY ODORANT STIMULATION [J].
CINELLI, AR ;
HAMILTON, KA ;
KAUER, JS .
JOURNAL OF NEUROPHYSIOLOGY, 1995, 73 (05) :2053-2071
[8]   THE SPATIAL-DISTRIBUTION OF CILIATED AND MICROVILLOUS OLFACTORY RECEPTOR NEURONS IN THE CHANNEL CATFISH IS NOT MATCHED BY A DIFFERENTIAL SPECIFICITY TO AMINO-ACID AND BILE-SALT STIMULI [J].
ERICKSON, JR ;
CAPRIO, J .
CHEMICAL SENSES, 1984, 9 (02) :127-141
[9]  
Friedrich RW, 1998, J NEUROSCI, V18, P9977
[10]   Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging [J].
Friedrich, RW ;
Korsching, SI .
NEURON, 1997, 18 (05) :737-752