Annealing-Free High Efficiency and Large Area Polymer Solar Cells Fabricated by a Roller Painting Process

被引:75
作者
Jung, Jae Woong [1 ]
Jo, Won Ho [1 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Kwanak Ku, Seoul 151742, South Korea
关键词
INTERPENETRATING NETWORK; MORPHOLOGY EVOLUTION; FULLERENE; PERFORMANCE; POLY(3-HEXYLTHIOPHENE); POLYTHIOPHENE; SEPARATION; TRANSPORT; FILMS;
D O I
10.1002/adfm.201000164
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polymer solar cells are fabricated by a novel solution coating process, roller painting. The roller-painted film composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) - has a smoother surface than a spin-coated film. Since the roller painting is accompanied by shear and normal stresses and is also a slow drying process, the process effectively induces crystallization of P3HT and PCBM. Both crystalline P3HT and PCBM in the roller-painted active layer contribute to enhanced and balanced charge-carrier mobility. Consequently, the roller-painting process results in a higher power conversion efficiency (PCE) of 4.6%, as compared to that for spin coating (3.9%). Furthermore, annealingfree polymer solar cells (PSCs) with high PCE are fabricated by the roller painting process with the addition of a small amount of octanedi-1,8-thiol. Since the addition of octanedi-1,8-thiol induces phase separation between P3HT and PCBM and the roller-painting process induces crystallization of P3HT and PCBM, a PCE of roller-painted PSCs of up to 3.8% is achieved without post-annealing. A PCE of over 2.7% can also be achieved with 5 cm(2) of active area without post-annealing.
引用
收藏
页码:2355 / U2
页数:9
相关论文
共 47 条
[1]   Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene [J].
Al-Ibrahim, M ;
Roth, HK ;
Zhokhavets, U ;
Gobsch, G ;
Sensfuss, S .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 85 (01) :13-20
[2]   Device physics of polymer:fullerene bulk heterojunction solar cells [J].
Blom, Paul W. M. ;
Mihailetchi, Valentin D. ;
Koster, L. Jan Anton ;
Markov, Denis E. .
ADVANCED MATERIALS, 2007, 19 (12) :1551-1566
[3]  
Brabec C., 2008, ORGANIC PHOTOVOLTAIC
[4]   Realization of large area flexible fullerene - Conjugated polymer photocells: A route to plastic solar cells [J].
Brabec, CJ ;
Padinger, F ;
Hummelen, JC ;
Janssen, RAJ ;
Sariciftci, NS .
SYNTHETIC METALS, 1999, 102 (1-3) :861-864
[5]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P15, DOI 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO
[6]  
2-A
[7]   Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends [J].
Campoy-Quiles, Mariano ;
Ferenczi, Toby ;
Agostinelli, Tiziano ;
Etchegoin, Pablo G. ;
Kim, Youngkyoo ;
Anthopoulos, Thomas D. ;
Stavrinou, Paul N. ;
Bradley, Donal D. C. ;
Nelson, Jenny .
NATURE MATERIALS, 2008, 7 (02) :158-164
[8]   Fast-Grown Interpenetrating Network in Poly(3-hexylthiophene): Methanofullerenes Solar Cells Processed with Additive [J].
Chen, Hsiang-Yu ;
Yang, Hoichang ;
Yang, Guanwen ;
Sista, Srinivas ;
Zadoyan, Ruben ;
Li, Gang ;
Yang, Yang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (18) :7946-7953
[9]   Morphologies of Self-Organizing Regioregular Conjugated Polymer/Fullerene Aggregates in Thin Film Solar Cells [J].
Chiu, Mao-Yuan ;
Jeng, U-Ser ;
Su, Ming-Shin ;
Wei, Kung-Hwa .
MACROMOLECULES, 2010, 43 (01) :428-432
[10]   Polymer-Fullerene Bulk-Heterojunction Solar Cells [J].
Dennler, Gilles ;
Scharber, Markus C. ;
Brabec, Christoph J. .
ADVANCED MATERIALS, 2009, 21 (13) :1323-1338