Tuning quantum dot properties by activated phase separation of an InGa(Al)As alloy grown on InAs stressors

被引:198
作者
Maximov, MV [1 ]
Tsatsul'nikov, AF
Volovik, BV
Sizov, DS
Shernyakov, YM
Kaiander, IN
Zhukov, AE
Kovsh, AR
Mikhrin, SS
Ustinov, VM
Alferov, ZI
Heitz, R
Shchukin, VA
Ledentsov, NN
Bimberg, D
Musikhin, YG
Neumann, W
机构
[1] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany
[2] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[3] Humboldt Univ, Inst Phys, D-10115 Berlin, Germany
关键词
D O I
10.1103/PhysRevB.62.16671
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Strain-driven decomposition of an alloy layer is investigated as a means to control the structural and electronic properties of self-organized quantum dots. Coherent InAs/GaAs islands overgrown with an InGa(Al)As alloy layer serve as a model system. Cross-section and plan-view transmission electron microscopy as well as photoluminescence (PL) studies consistently indicate an increase in height and-width of the island with increasing indium content and/or thickness of the alloy layer. The increasing island size is attributed to the phase separation of the alloy layer driven by the surface strain introduced by the initial InAs islands. The decomposition is enhanced by the addition of aluminum to the alloy layer. The ground-state transition energy in such quantum dots is significantly (up to 200 meV) redshifted compared to the original InAs/GaAs quantum dots, allowing to reach the 1.3 mum spectral region maintaining the high PL efficiency and the low defect density typical for Stranski-Krastanow growth. The possibility of degradation less stacking of such quantum dot layers enables injection lasing on the ground-state transition with a differential efficiency of 57% and a continuous-wave output power of 2.7 W.
引用
收藏
页码:16671 / 16680
页数:10
相关论文
共 58 条
[1]   Influence of a thin AlAs cap layer on optical properties of self-assembled InAs/GaAs quantum dots [J].
Arzberger, M ;
Käsberger, U ;
Böhm, G ;
Abstreiter, G .
APPLIED PHYSICS LETTERS, 1999, 75 (25) :3968-3970
[2]   Temperature dependence of the threshold current density of a quantum dot laser [J].
Asryan, LV ;
Suris, RA .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1998, 34 (05) :841-850
[3]   Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser [J].
Asryan, LV ;
Suris, RA .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1996, 11 (04) :554-567
[4]  
Bimberg D., 1999, QUANTUM DOT HETEROST
[5]   Spontaneous emission and threshold characteristics of 1.3-μm InGaAs-GaAs quantum-dot GaAs-based lasers [J].
Deppe, DG ;
Huffaker, DL ;
Csutak, S ;
Zou, Z ;
Park, G ;
Shchekin, OB .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1999, 35 (08) :1238-1246
[6]  
Egorov AY, 1996, SEMICONDUCTORS+, V30, P707
[7]   Maximum operating power of 1.3 μm strained layer multiple quantum well InGaAsP lasers [J].
Elenkrig, BB ;
Smetona, S ;
Simmons, JG ;
Makino, T ;
Evans, JD .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (04) :2367-2370
[8]   GROWTH BY MOLECULAR-BEAM EPITAXY AND CHARACTERIZATION OF INAS/GAAS STRAINED-LAYER SUPERLATTICES [J].
GOLDSTEIN, L ;
GLAS, F ;
MARZIN, JY ;
CHARASSE, MN ;
LEROUX, G .
APPLIED PHYSICS LETTERS, 1985, 47 (10) :1099-1101
[9]   INAS/GAAS QUANTUM DOTS - RADIATIVE RECOMBINATION FROM ZERO-DIMENSIONAL STATES [J].
GRUNDMANN, M ;
LEDENTSOV, NN ;
HEITZ, R ;
ECKEY, L ;
CHRISTEN, J ;
BOHRER, J ;
BIMBERG, D ;
RUVIMOV, SS ;
WERNER, P ;
RICHTER, U ;
HEYDENREICH, J ;
USTINOV, VM ;
EGOROV, AY ;
ZHUKOV, AE ;
KOPEV, PS ;
ALFEROV, ZI .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1995, 188 (01) :249-258
[10]   Gain and threshold of quantum dot lasers: Theory and comparison to experiments [J].
Grundmann, M ;
Bimberg, D .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 1997, 36 (6B) :4181-4187