Rollable Multisegment Dielectric Elastomer Minimum Energy Structures for a Deployable Microsatellite Gripper

被引:221
作者
Araromi, Oluwaseun A. [1 ]
Gavrilovich, Irina [2 ]
Shintake, Jun [1 ]
Rosset, Samuel [1 ]
Richard, Muriel [2 ]
Gass, Volker [2 ]
Shea, Herbert R. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Microsyst Space Technol Lab, CH-2000 Neuchatel, Switzerland
[2] Ecole Polytech Fed Lausanne, Swiss Space Ctr, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Active debris removal (ADR); artificial muscles; deployable mechanism; dielectric elastomer actuator (DEA); space debris;
D O I
10.1109/TMECH.2014.2329367
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Debris in space presents an ever-increasing problem for spacecraft in Earth orbit. As a step in the mitigation of this issue, the CleanSpace One (CSO) microsatellite has been proposed. Its mission is to perform active debris removal of a decommissioned nanosatellite (the CubeSat SwissCube). An important aspect of this project is the development of the gripper system that will entrap the capture target. We present the development of rollable dielectric elastomer minimum energy structures (DEMES) as the main component of CSO's deployable gripper. DEMES consist of a prestretched dielectric elastomer actuator membrane bonded to a flexible frame. The actuator finds equilibrium in bending when the prestretch is released and the bending angle can be changed by the application of a voltage bias. The inherent flexibility and lightweight nature of the DEMES enables the gripper to be stored in a rolled-up state prior to deployment. We fabricated proof-of-concept actuators of three different geometries using a robust and repeatable fabrication methodology. The resulting actuators were mechanically resilient to external deformation, and display conformability to objects of varying shapes and sizes. Actuator mass is less than 0.65 g and all the actuators presented survived the rolling-up and subsequent deployment process. Our devices demonstrate a maximum change of bending angle of more than 60 degrees and a maximum gripping (reaction) force of 2.2 mN for a single actuator.
引用
收藏
页码:438 / 446
页数:9
相关论文
共 23 条
[1]   Improved electromechanical behavior in castable dielectric elastomer actuators [J].
Akbari, Samin ;
Rosset, Samuel ;
Shea, Herbert R. .
APPLIED PHYSICS LETTERS, 2013, 102 (07)
[2]  
Al-Chami H., 2009, MIX SIGN SENS SYST T, P1
[3]   Multi-functional dielectric elastomer artificial muscles for soft and smart machines [J].
Anderson, Iain A. ;
Gisby, Todd A. ;
McKay, Thomas G. ;
O'Brien, Benjamin M. ;
Calius, Emilio P. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (04)
[4]  
Gavrilovich I., 2013, STUDY DIELECTRIC ELA
[5]   Self sensing feedback for dielectric elastomer actuators [J].
Gisby, Todd A. ;
O'Brien, Benjamin M. ;
Anderson, Iain A. .
APPLIED PHYSICS LETTERS, 2013, 102 (19)
[6]   Self-organized minimum-energy structures for dielectric elastomer actuators [J].
Kofod, G. ;
Paajanen, M. ;
Bauer, S. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 85 (02) :141-143
[7]   Energy minimization for self-organized structure formation and actuation [J].
Kofod, Guggi ;
Wirges, Werner ;
Paajanen, Mika ;
Bauer, Siegfried .
APPLIED PHYSICS LETTERS, 2007, 90 (08)
[8]   An active debris removal parametric study for LEO environment remediation [J].
Liou, J. -C. .
ADVANCES IN SPACE RESEARCH, 2011, 47 (11) :1865-1876
[9]   The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications [J].
Lotters, JC ;
Olthuis, W ;
Veltink, PH ;
Bergveld, P .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 1997, 7 (03) :145-147
[10]   Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial constraint of stiff fibers [J].
Lu, Tongqing ;
Huang, Jiangshui ;
Jordi, Christa ;
Kovacs, Gabor ;
Huang, Rui ;
Clarke, David R. ;
Suo, Zhigang .
SOFT MATTER, 2012, 8 (22) :6167-6173